

Industrial Hoses

Catalogue

ENGINEERING YOUR SUCCESS.

Detailed table of Contents

Alphabetical Index	IV
Index by Application	V
Partnumber Index	VI
Promotional pages	
Global hose	13
Silicone Hose	14
E-Z Form	14
Barrier Hose	15
POLIAX range	16
GAMBRINUS range	17
Low Temperature Hose	
Technical Handbook	
Hose Selection Matrix	TH4
Hose Part Number Description	TH8
Parker Safety Guide	TH37
Hose Technical Specification	
🚱 Oil & Fuel	Α
Automotive	В
Gas	C
Se Water	D
B Hot Water & Steam	E
Acid & Chemicals	F
Material Handling	G
Beverage & Food	Н
Multipurpose & Air	I

We reserve the right to modify whenever necessary the features and specifications of the products included in this publication without prior notice.

Alphabetical Index

Α		Page
()	AIRBRAKE DIN 74310	B8
Θ	APERFRUT 20	114
\odot	APERFRUT 40	114
Θ	APERFRUT 80	114
Ð	APERSPIR	H10
•	ASPIREX	G7
	AUTOGENE EN ISO 3821 NR/L - NB/L 20	C4
В		Page
6	BETON 80	G5
9	BEVERA 10	D5
С		Page
6	CARBO G NY/L 10	C6
(?)	CARBOBLUE N/L 20	B12
	CARBOCORD EN 12115	A6
9	CARBOPRESS N/L 10	A4
8	CARBURITE 10	A5
•	CERGOM	G6
8	CERVINO EN 12115	A8
	CHEMIOEL EN 12115	A7
D		Page
Ø	DRINKPRESS WB/L 10	H4
Ε		Page
9	E-Z FORM™ GS	B5
	E-Z FORM™ HT	A9
0		

			9	RADIOR 3 (CUT LEN
			(?)	RADIOR DIN 6
			Ð	RADIOR K 1003
G		Page	S	
P	GAMBRINUS BLUE 10	H6	3	
-			()	SERIES 395 SAE J 30
97	GAMBRINUS BLUE SM 10	H7	63	
P	GAMBRINUS RED SM 10	H8	9	SERIES 6722
		110	()	SM/TR 311
T	GAMBRINUS UPE SM EN12115	H5		
9	GST II BLACK 15	14	()	SUPER-FLEX® FL
9	GST II BLACK 13	14	()	SUPER-FLEX® FL-7
Θ	GST II BLACK 20	16	C.	SOF EITHEEX TE 7
6	GST II RED 15	15		
9		10		

B-Z FORM™ MP

L		Page
9	IDRO 10	D4
J		Page
Θ	JUMBO N/L	l10
L		Page
•	LIBECCIO EN ISO 3861	G4
Μ		Page

111

B14

MINIERA 20 MSHA

_		
Ο		Page
\odot	OILPRESS N/L 20	l13
Ρ		Page
	POLIAX D EN 12115	F4
	POLIAX D SM EN 12115	F5
	POLIAX F EN 12115	F8
	POLIAX PHARMA	F9
	POLIAX UPE CON SM EN 12115	F6
	POLIAX UPE CON SM EN 12115 OND	F7
	PROPANPRESS EN ISO 3821 NA/L 20	C5
Θ	PYTHON N/L 20	17
Θ	PYTHON NV/L 20	18
Θ	PYTHON NY/L 30	19

F

112

R		Page
9	RADIOR 10	B4
Ŀ	RADIOR 3 (COIL)	E4
Ð	RADIOR 3 (CUT LENGTH)	E5
(?)	RADIOR DIN 6	B6
Ð	RADIOR K 1003	E6
S		Page
۲	SERIES 395 SAE J 30R7	B9
	SERIES 6722	B7
۲	SM/TR 311	B14
(9)	SUPER-FLEX® FL	B15

т	Page
🛞 TBE	B11
🛞 TBSE	B10
THERMOPRESS 10	E7
	_
V	Page
UIGOR 2 EN ISO 6134 TYPE 2/A	E8
VINITRESS	H9

W		Page
()	WAVEMASTER™	B13

Index by Application

Page A4 A5 A6 A7 A8 A9

A	– Oil & Fuel
	CARBOPRESS N/L 10
	CARBURITE 10
•	CARBOCORD EN 12115
	CHEMIOEL EN 12115
	CERVINO EN 12115
	E-Z FORM™ HT

B	-Automotive & Boat	Page
9	RADIOR 10	B4
9	E-Z FORM™ GS	B5
()	RADIOR DIN 6	B6
9	SERIES 6722	B7
9)	AIRBRAKE DIN 74310	B8
9	SERIES 395 SAE J 30R7	B9
()	TBSE	B10
9	TBE	B11
()	CARBOBLUE N/L 20	B12
9	WAVEMASTER™	B13
9)	SUPER-FLEX® FL-7	B15
9	SUPER-FLEX® FL	B14

C	– Gas	Page
0	AUTOGENE EN ISO 3821 NR/L - NB/L 20	C4
6	PROPANPRESS EN ISO 3821 NAVL 20	C5
Ø	CARBO G NY/L 10	C6

D –	Water	Page	Ε	– Hot
😂 ID	RO 10	D4		RADIOF
😂 BE	EVERA 10	D5	•	RADIOF

E – Hot Water & Steam	Page
RADIOR 3	E4 E5
RADIOR K 1003	E6
HERMOPRESS 10	E7
UIGOR 2 EN ISO 6134 TYPE 2/A	E8

F-Acid & Chemicals	Page
POLIAX D EN 12115	F4
POLIAX D SM EN 12115	F5
POLIAX UPE CON SM EN 12115	F6
POLIAX UPE CON SM EN 12115 OND	F7
POLIAX F EN 12115	F8
DOLIAX PHARMA	F9

G – Material Handling	Page
BECCIO EN ISO 3861	G4
BETON 80	G5
CERGOM	G6
ASPIREX	G7

H	- Beverage & Food	Page
?	DRINKPRESS WB/L 10	H4
9	GAMBRINUS UPE SM EN12115	H5
•	GAMBRINUS BLUE 10	H6
•	GAMBRINUS BLUE SM 10	H7
?	GAMBRINUS RED SM 10	H8
P	VINITRESS	H9
•	APERSPIR	H10

1-	- Multipurpose & Air	Page
Θ	GST II BLACK 15	14
\odot	GST II RED 15	15
Θ	GST II BLACK 20	16
\odot	PYTHON N/L 20	17
Θ	PYTHON NV/L 20	18
\odot	PYTHON NY/L 30	19
Θ	JUMBO N/L	110
\odot	MINIERA 20 MSHA	111
Θ	E-Z FORM™ MP	112
Θ	OILPRESS N/L 20	113
Θ	APERFRUT 20	114
Θ	APERFRUT 40	114
Θ	APERFRUT 80	114

Partnumber Index

	Hose	page
(IH+6 digits) IH110013	ОТВЕ	B11
IH301140	RADIOR 10	B4
IH301165	JUMBO N/L	110
	DRINKPRESS WB/L 10	H4
IH303151	AIRBRAKE DIN 74310	B8
	PYTHON N/L 20	17
IH303512	PYTHON NV/L 20	18
		19
IH304127	AUTOGENE EN ISO 3821 NR/L - NB/L 20	C4
IH304128	AUTOGENE EN ISO 3821 NR/L - NB/L 20	C4
IH304129	AUTOGENE EN ISO 3821 NR/L - NB/L 20	C4
IH304132	AUTOGENE ^{AL} N ISO 3821 NR/L - NB/L 20	C4
IH304134	PROPANPRESS EN ISO 3821 NA/L 20	C5
IH305010	CARBOPRESS N/L 10	A4
IH305020	CARBOPRESS N/L 10	A4
IH305110	CARBOPRESS N/L 10	A4
IH305120	CARBOPRESS N/L 10	A4
IH305150	CARBOBLUE N/L 20	B12
IH305515	CARBO G NY/L 10	C6
IH305516	CARBO G NY/L 10	C6
IH308313	RADIOR K 1003	E6
IH308320	OILPRESS N/L 20	113
IH308361	 RADIOR DIN 6 	B6
IH308710	G7 G7 G7	B10
395	SERIES 395 SAE J 30R7	B10
IH350332	VINITRESS	H9
IH350400	APERFRUT 20 - 40 - 80	113
IH350401	A PERFRUT 20 - 40 - 80	114
IH350402	A PERFRUT 20 - 40 - 80	114
IH355600	ASPIREX	G7
IH355601	ASPIREX ASPIREX	G7
IH355602	ASPIREX ASPIREX	G7
IH355620	ASPIREX ASPIREX	G7
IH355621	ASPIREX ASPIREX	G7
IH356410		ыл Н10
IH356411		H10
IH362030	DRO 10	нто D4
IH362030		
		D4
IH362110	BEVERA 10	D5
IH362140	BEVERA 10	D5
IH362423	GAMBRINUS UPE SM EN12115	H5

Partnumber			
(IH+6 digits)	Hos	Se	page
IH362424	Ð	GAMBRINUS BLUE 10	H6
	Ð	GAMBRINUS BLUE SM 10	H7
IH362425	Ð	GAMBRINUS RED SM 10	H8
IH363421	Θ	MINIERA 20 MSHA	111
	Θ	PYTHON N/L 20	17
IH363512	Θ	PYTHON NV/L 20	18
	Θ	PYTHON NY/L 30	19
IH365223	0	CARBOCORD EN 12115	A6
IH365300	•	CARBURITE 10	A5
IH365302	•	CARBURITE 10	A5
111303302	8	CHEMIOEL EN 12115	A7
IH365304	8	CERVINO EN 12115	A8
IH365310	•	CARBURITE 10	A5
IH368000	٩	THERMOPRESS 10	E7
IH368017	٩	VIGOR 2 EN ISO 6134 TYPE 2/A	E8
11.10001.01	6	POLIAX D EN 12115	F4
IH368101	6	POLIAX D SM EN 12115	F5
	6	POLIAX F EN 12115	F8
	6	POLIAX PHARMA	F9
IH368115	6	POLIAX UPE CON SM EN 12115	F6
		POLIAX UPE CON SM EN 12115 OND	F7
IH368202	•	LIBECCIO EN ISO 3861	G4
IH368203	•	LIBECCIO EN ISO 3861	G4
IH368290	۲	CERGOM	G6
	٩	RADIOR 3 (COIL)	E4
IH368300	٩	RADIOR 3 (CUT LENGTH)	E5
IH368301	9	RADIOR 3 (COIL)	E4
	٩	RADIOR 3 (COIL)	E4
IH368310	٩	RADIOR 3 (CUT LENGTH)	E5
IH368361	9)	RADIOR DIN 6	B6
389	9	SUPER-FLEX® FL-7	B14
397		SUPER-FLEX® FL	B15
6722	٩	SERIES 6722	B7
IH7092	Θ	GST II RED 15	15
	Θ	GST II BLACK 15	14
IH7093	Θ	GST II BLACK 20	16
7165	9	WAVEMASTER™	B13
IH7219	Θ	E-Z FORM™ MP	112
IH7395		E-Z FORM™ GS	B5
7399	•	E-Z FORM™ HT	A9
L			

Service – Helpdesk

An expert team of sales and customer service specialists are at your disposal, assuring proficient support and appropriate problem solving resources. Parker provides personal sales and technical support through local branch sales representatives as well as regional industrial hose sales specialists, product sales managers and engineers. We care about your business and seek to develop a close relationship with you.

PARKER HANNIFIN – THE GLOBAL LEADER AND YOUR PARTNER

Parker Hannifin is the world's leading diversified manufacturer of motion and control technologies and systems, providing precision-engineered solutions for a wide variety of mobile, industrial and aerospace markets. Our products are vital to virtually everything that moves or requires control, including the manufacture and processing of raw materials, durable goods, infrastructure development and all forms of transport.

Our engineering expertise spans the core motion and control technologies – electromechanical, hydraulic and pneumatic – as well as a full complement of fluid control systems; software and electronic controls; filtration systems; and refrigeration, instrumentation and sealing technologies.

Dry Technology

The leader in "dry technology" for the fluid power industry, Parker's Fluid Connectors Group is your single source for high-quality tube fittings, hose and hose fittings, thermoplastic tubing, brass fittings and valves, quick disconnect couplings and assembly tools.

Markets

The Fluid Connectors Group serves customers in a broad range of markets, including Aerial Lift, Agriculture, Bulk Chemical Handling, Construction Machinery, Food & Beverage, Fuel & Gas Delivery, Industrial Machinery, Medical, Mining, Mobile, Oil & Gas and Transportation.

Customer Services

Products are available for shipment 24 hours a day, supported by 50 manufacturing facilities throughout the world and a global distribution network. Our commitment to you is impeccable customer service. To meet your specific requirements, we offer a broad range of programs designed to reduce your overall operating costs, streamline manufacturing, improve productivity, manage inventory, enhance delivery and address safety and environmental issues. For value-added services that generate value-added solutions, team up with Parker!

PARKER HANNIFIN – OPPORTUNITY THROUGH INNOVATION IN THE WORLD'S MOST DEMANDING MARKETS

Worldwide availability

With more than 50 000 employees serving our valued customers in almost 50 countries, Parker is literally everywhere you need us to be. By working with us, you have access to an integrated network of 320 manufacturing plants, as well as an unrivalled global distribution network.

Flexibility

As the world's motion control expert, Parker offers you a complete range of proven, off-the-shelf products. These products deliver exceptional quality and durability, reducing costs and advancing performance.

Innovation

It's what drives us. Our mandate for continuous improvement leads us to partner with our customers to create solutions that are smaller, lighter, sustainable, more energy efficient, and highly reliable.

Polymer Hose Division Europe

Performing solutions for every market and application wherever they are

Parker industrial hose products are the preferred choice across diverse applications, industries and markets. Whether the need is for durable rubber, lightweight and flexible composite, abrasion resistant PVC or extreme temperature silicone hose, Parker has the right hose for your job. We offer a wide variety of hose construction options, materials and performance criteria. Parker hoses are designed, built and supplied globally for long-lasting performance and superior value, and have earned a reputation for excellence in agriculture, construction, petrochemical, transportation and many other markets. We supply a variety of hoses suitable for multiple media: standard hoses for traditional service as well as heavy duty hoses that provide superior reistance to abrasion, oils,

chemicals, heat, flame and cold. We have the ability and expertise to safetly handle either hazardous media in hars environment and valuable and delicate media in protected environment. From design, development and production to stocked inventory and shipment; we apply our know how and passion to provide our customers with solid and efficacious solutions.

Our History of Experience

With our history of success and reputation as a world-class manufacturer of flexible rubber hose, we continue to pursue and develop technologies offering the best solution for every application. Recent activities includes: Pelican hose assembly for bunkering application in ports and docks, introduction of innovative products such as ultra-flexible E-Z Form hose, development of the breakthrough technology such as extremely abrasion resistant CERGOM material handling hose, and special application hoses Carboblue. The latter hoses are environmentaly friendly, providing the required high grade of cleanliness for the SRC technology reducing NOx emission. Our success stories include a number of global OEMs and distributors across many diverse industries. We contribute to short-and longterm customer profitability by maximizing value through premier product quality and service.

Capabilities

Our manufacturing process is supported by a highly qualified and experienced engineering staff and efficient production equipment. Deployment of these resources ensures precision control of the manufacturing process and materials, as well as the ability to create new design idea and implement solution. Now we have introduced into our range new materials such as silicone and PTFE to further meet customers' expectations and be more active in the industrial and chemical market segments.

Production line	ID min (mm)	ID max (mm)
Long Length	3	38
Mandrel Made	13	200
PVC	6	150
Thermoplastic	13	75
Silicone	13	51

Quality

Parker is a company which operates in compliance with the quality system laid down by the UNI EN ISO 9001 and 14001 standard, certified by Bureau Veritas.

More and more Parker industrial hoses are certified by the main international certification bodies.

Ecology

Caring for and ensuring the sustainability of the planet is our intention; we therefore develop and improve hoses for alternative fuels like gas, natural oils, ester oils etc. for environmentallyfriendly technologies such as the new SCR one.

Parker developed nitrosaminefree compounds

to improve the quality of life and of the environment.

We are doing more for our customers than ever before. Globally, we have localized service to provide fast, hassle-free responses and on-site support. We're staying close to our customers and integrating systems to help them become more profitable. We are committed to delivering our highly engineered products on-time, onpromise.

Compounds

Our R&D team invests significant resources in the development of new and improved rubber compounds. The recipes are formulated according to the final application of the hose, guaranteeing the utmost performance of the inner tube and cover. An efficient technical center makes it possible to test

and study

the properties and behavior of different ingredients in order to identify and solve possible critical problems. All aspects of compounds development and production – from design to testing to manufacturing – are constantly in compliance with main relevant international

standards. Modern testing equipment allows us to check the product during any stage of the process.

Oil & Fuel Hose Pelican EN 1765 type S15

Pelican Hose is specially designed for bunkering operations. It is the activity for the loading, discharging and transferring of fuels between a bunker barge, a marine terminal or a marine facility from/ to a receiving ship. Bunkering operations needs to be performed diligently, safely with all necessary measures in place to prevent fuel spillage into the waters of the Port or onto the quayside. It is thus fundamental to have solid and reliable components aligned with the international industry standards. Pelican is recommended in

combination with Parker large bore crimped fittings range specifically designed for its structure and sold in customized length assemblies. Please contact our Customer Service Helpdesk in your local Parker location.

Supplied and tested with end crimped fittings enables a significant time reduction compared to traditional solution with vulcanized couplings optimizing the operability of end user. Parker Pelican hose assemblies are available conductive or discontinuous based on the individual application.

Material Handling Transfer Hose – CERGOM

CERGOM is manufactured and patented based on a unique hose technology for pneumatic delivery and vacuum conveying systems of abrasive materials.

The hose is constructed in a combination of a new tube material with ceramic hexagonal plates. With the added benefit of the ultra high abrasion resistance, the hose has an increased service life in comparison to elastomer hoses qualities and rigid tubes and therefore the maintenance cost and machine shut downs will be reduced to a minimum. Together with the respective fitting range (swivel flanges) CERGOM is ideal for tough environments such

Global Hose

as steelworks, thermoelectric power plants, cement works, mining industry etc. CERGOM hose assemblies are very flexible in use with different working conditions and easier to handle than rigid elbows. Based on its construction, CERGOM hose assemblies minimize significantly the vibration and noise during operation solving the toughest challengies for abrasive material handling.

Same hose, same performance, same features, same availability everywhere



Our Global Hose Program consists of a worldwide network of Parker manufacturing facilities and distribution centers that assure consistent Parker quality while providing the flexibility to satisfy peaks of customer demand. The synergy among Industrial hose divisions around the world is one of our primary strength and an value-added support for our customers. Parker global hoses are suitable for OEMs and MRO channels, for diverse application across multiple industries and markets.

Silicone Hose

Silicone rubber hose is the ultimate choice for those extreme-temperature application.

Silicone has a number of chemical and mechanical and offers benefits for designers and users such as: improved performance over the long haul; flexibility while retaining their shape for installation in tight envelopes or around obstructions; low permeation to reduce or eliminate emissions, odors. Last but not least, it can be truly sterilized to ensure purity of products being manufactured or processed. We offer solution either for cooling in industrial or transportation application (series 6722) and in the food, pharmaceutical and chemical industry (series Poliax Pharma).

GAMBRINUS range

Rubber and PVC hose range specifically designed for food & beverage industry to efficiently and safely convey all foodstuff while preserving products features and consumer health.

For more information about the new GAMBRINUS range please refer to pages H5 - H8

The program includes specific alimentary hoses to withstand and preserve different typologies of foodstuff during the collecting, transport and processing phases. Produced on dedicated lines using stainless steel mandrels, our compounds are resistant to cleaning and sterilization to guarantee utmost hygienic standard.

Each GAMBRINUS line is designed to fit specific products features. The appropriate manufacturing and performance standards are certified by compliance with main European and International norms and specs such as EC 1935, BfR XXI, FDA. We also offer Stainless Steel Fittings capabilities – with permanently crimping ferrule or safety/bolt clamps – providing solutions to the most demanding applications in process plants. Our offering is supplemented with PVC hoses that offer an alternative to rubber where lighter weight is preferred.

E-Z Form Hose

Kink-free E-Z Form™ Hose Eliminates the Need for Pre-formed Hose

Barrier Hose

Fuel, Vapor and Coolant/Heater Hoses

Parker offers a package of durable, flexible and lightweight hoses to handle virtually every engine-related requirement, including fuel supply, vapor emission and cooling. These can be used in multiple market segments such as agriculture, offroads, marine and transportation. They are designed to comply with the main international standards (ISO, SAE) and offer a superior low permeability rate for a higher protection of components and users. Compatible with biodiesel, diesel, ethanol and gasoline.

E-Z Form hose provides extreme flexibility for easy and quick installation of coolant, water and oil suction/return lines on mobile and industrial equipment. Available in multiple incremental sizes, E-Z Form hose reduces installation time, eliminates the need for costly made-to-order pre-formed hose and provides rapid delivery from stock without requiring dedicated inventory.

The offer has been extended to a High Temperature version, designed to resist cracking and deterioration from the extreme heat generated by engine compartments of buses, cranes, trucks and mobile/heavy-duty off-road equipment. It may also be used in non-SAE power steering return line applications.

POLIAX range

Hoses manufactured with state-of-the-art compounds according to European standards to transfer chemicals, corrosive products and additives in mobile or fixed installations.

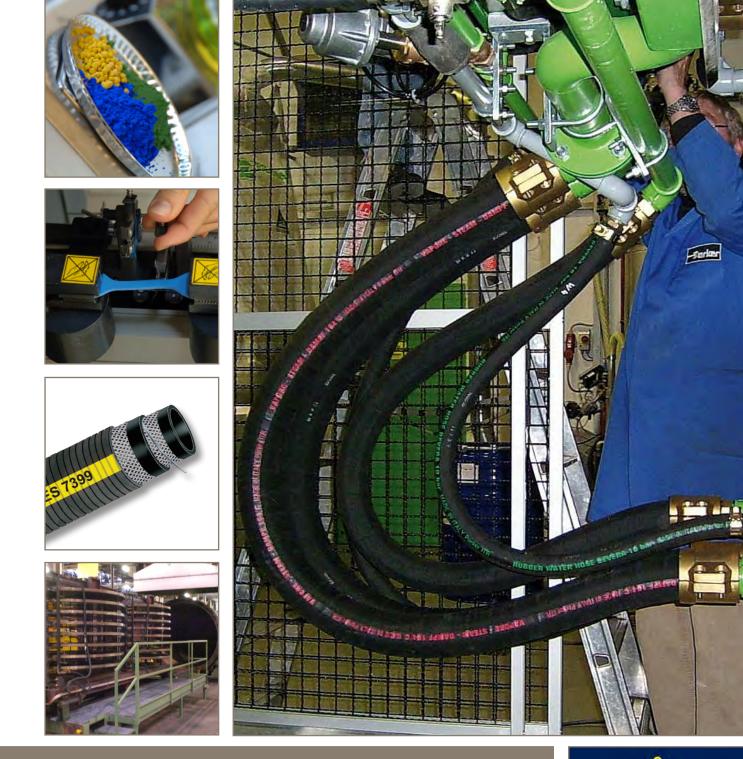
Extreme chemical transfer applications do not scare us; on the contrary it is part of our mission and a commitment. Our Poliax product line inhibits the contamination of the environment and guarantees the integrity of the media conveyed. The hose meets or exceeds EN 12115 specifications. We have multiple construction typologies to suits as many needs as possible and the range has been extended to new materials silicone and PTFE to withstand higher temperatures and aggressive fluid concentration. The corrugated version offers additional flexibility and it is easy to handle in case of routing constraints or manual operations. Due to many different media combinations of acids, solvents, alkalis - and aninfinite variety of possible combinations - we recommend to utilize the STAMP approach and always consult our chemical compatibility chart to select the most appropriate hose. If there are any doubts or question, contact a Parker engineer.

For more information about the POLIAX range please refer to chapter F (Acid & Chemicals)

Industrial Hose Fittings

Your industrial application requires quality fittings that meet regulatory standards and outperform your expectations. Parker is up for the challenge with a variety of fittings with different end-configurations and geometry to meet all of your application needs.

We have tested and approved all offered fitting series for your application to enhance reliability and performance.


You can rely on Parker fitting series one-piece 48 and 56 series, two-piece 47 series with shell 10064 and IF series for large bore hoses.

Industrial Hoses

Technical Handbook

ENGINEERING YOUR SUCCESS.

Technical Handbook

Technical Handbook	TH3
Hose Selection Matrix	TH4
Rubber Hose Construction	TH6
PVC Hose Construction	TH7
Hose Part Number Description	TH8
Conversion Chart	TH9
Before you spec it, STAMP it.	TH10 – TH11
Standards	TH12
Guideline to Use and Cleaning of Food and Pharma Hose	TH13
Oil and Fuel Compatibility	TH14
Conductive Value Table	TH15
Properties of Basic Rubber Compounds	TH16
Chemical Resistance Table	TH17 – TH32
Chemical Resistance Guide for Silicone Hose	TH33
Rubber Hose Dimensional Tolerances – According to norms	TH34
PVC Hose Dimensional Tolerances	TH34
Parker Safety Guide	TH35 – TH40
Critical Applications	TH39 – TH42

Technical Handbook Hose Selection Matrix

		9	ŀ						4			
	Hose	Range	lemp. Range (°C)	Application	Tube	Reinforcement	Cover	WP (bar)	sign factor	Suc- tion	Industry standard	Page
	CARBOPRESS N/L 10	5 - 25	-25 / +80	fuel, oil, petrol aromatic $< 50 \%$	NBR	textile	NBR/EPDM	10	က			~;>
Oil	CARBURITE 10	19 - 150	-30 / +80	fuel, oil, petrol aromatic $< 50 \%$	NBR	textile	NBR/SBR	10	က	yes		$\stackrel{>}{\sim}$
& F	CARBOCORD EN 12115	19 - 63.5	-25 / +80	fuel, oil, petrol aromatic $< 50 \%$	NBR	textile + copper wires	NBR/SBR	16	4		EN 12115	~;>
uel	CHEMIOEL EN 12115	19 - 100	-25 / +80	fuel, oil, petrol aromatic $< 50 \%$	NBR	textile + copper wires	NBR/SBR	16	4	yes	EN 12115	$\stackrel{<}{\sim}$
	CERVINO EN 12115	50 - 63.5	-40/+80	-40 / +80 fuel, oil, petrol aromatic < 50 %	NBR	textile + copper wires	NBR/SBR	16	4	yes	EN 12115	$\stackrel{<}{\sim}$
	E-Z FORM TM HT	12.7 - 25.4	-40 / +150	12.7 - 25.4 -40 / +150 petroleum-based oil	CPE	textile	NBR	10	4	yes		A9
	RADIOR 10	7 - 15	-30 / +100	-30 / +100 cooling line system	EPDM	textile	EPDM	10	က			B4
	E-Z FORM TM GS	12.7 - 102		-45 / +125 high flexible hose for coolant line system	EPDM	textile	EPDM	IJ	4	yes	SAE J 20R2 - D1	B5
	RADIOR DIN 6	10 - 50	-40 / +125	-40 / +125 cooling line system	EPDM	textile	EPDM	9	က			BG
A	Series 6722	6 - 25	-54 / +177	-54 / +177 Heater and cooling line system	SILICONE	textile	SILICONE	5.7	က		SAE J20R3 Class A	Β7
utor	AIRBRAKE DIN 74310	9 - 13	-40/+70	breaking system	EPDM	textile	EPDM	10	4		DIN 74310	B8
noti	Series 395 SAE J 30R7	4.8 - 12.7	-40 / +125	-40 / +125 car & motorbike fuel system	NBR	textile	CR	2.4/5.2	Ω		SAE 30 R7	B9
ve&	TBSE	4 - 10	-30 / +100	-30 / +100 car & motorbike fuel system	NBR	textile	NBR/EPDM	10	က			B10
Boa	TBE	3 - 7.5	-20/+90	car & motorbike fuel system	NBR	textile		10	с			B11
it	CARBOBLUE N/L 20	6 - 25	-40 / +100	-40 / +100 nox reducing system	EPDM	textile	EPDM	20	m			B12
	WAVEMASTER TM	6.3 - 19	-29/+100	-29 / +100 marine barrier fuel hose	NYLON	textile	NBR/PVC	2	4	light	Refer to the page	B13
	SUPER-FLEX® FL-7	4.7 - 19.1	-40/+125	-40 / +125 low permation fuel hose	NBR/THV	textile	CPE	6.9	ŝ	light	SAEJ30R7/J30R14T2	B15
	SUPER-FLEX® FL	4.7 - 15.9	-30/+125	-30 / +125 low permation fuel hose	NBR/ barrier	textile	CPE	6.9	2	light	AEJ30R7/J30R14T2	B16
	AUTOGENE EN ISO 3821 NR/L – NB/L 20	6.3 - 10	-25 / +80	welding process	EPDM/SBR	textile	EPDM	20	n		EN ISO 3821	~;>
Gas	PROPANPRESS EN ISO 3821 NA/L 20	6.3 - 10	-30/+70	propan gas delivery	NBR/NR	textile	EPDM	20	m		EN ISO 3821	$\stackrel{\scriptstyle <}{\sim}$
	CARBO G NY/L 10	8 - 13	-20/+90	household applicances	NBR	textile	EPDM	10	က		UNI CIG 7140	$\stackrel{<}{\sim}$
Wa	IDRO 10	25 - 40	-30/+80	water, non aggressive liquids	SBR	textile	SBR	10	က			$\stackrel{\wedge}{\sim}$
ter	BEVERA 10	19 - 125	-30 / +80	-30 / +80 water, non aggressive liquids	SBR	textile	SBR	10	n	yes		~;>
H	RADIOR 3	10 - 100	-40 / +100	-40 / +100 cooling line system	EPDM	textile	EPDM	c	e			X
ot W Ste	RADIOR K 1003	12 - 50	-40 / +100	-40 / +100 cooling line system	NBR	textile	CR	2	m			$\stackrel{<}{\sim}$
ater am	THERMOPRESS 10	12 - 40	-40 / +100	-40 / +100 cooling line and hot water	EPDM	textile	EPDM	10	4			$\stackrel{<}{\sim}$
&	VIGOR 2 EN ISO 6134 Type 2/A	13 - 51	-40/+210	-40 / +210 steam industrial application	EPDM	textile	EPDM	18	10		EN ISO 6134 Type 2/A	$\stackrel{<}{\sim}$
L	POLIAX D EN 12115	19 - 100	-35 / +100	-35 / +100 chemical resistance table	EPM	textile + copper wires	EPDM	16	4		EN 12115	$\stackrel{<}{\sim}$
cid	POLIAX D SM EN 12115	19 - 100	-35 / +100	-35 / +100 chemical resistance table	EPM	textile + copper wires	EPDM	16	4	yes	EN 12115	$\stackrel{<}{\sim}$
&C	POLIAX UPE CON SM EN 12115	19 - 100	-20 / +100	-20 / +100 chemical resistance table	UHMWPE	textile + copper wires	EPDM	16	4	yes	EN 12115	~;~
hem	POLIAX UPE CON SM EN 12115 OND	19 - 75	-20 / +100 chemical	chemical resistance table	UHMWPE	textile + copper wires	EPDM	16	4	yes	EN 12115	$\stackrel{\wedge}{\searrow}$
icals	POLIAX F EN 12115	13 - 75	-40/+150	-40 / +150 chemical resistance table	PTFE	textile + copper wires	EPDM	16	4	yes	EN 12115	$\stackrel{\wedge}{\succ}$
9	POLIAX PHARMA	13 - 51	-60/+200	-60 / +200 chemical resistance table	SILICONE	textile + copper wires	SILICONE	6/15	c	yes		~ ~

ISO 7840, ABYC, CARB, CE, EPA, NMMA, SAE J1527 A1-15, USCG A1

-Parker

								ĺ		ĺ		
	Hose	ID Range (mm)	Temp. Range (°C)	Application	Tube	Reinforcement	Cover	WP (bar)	De- sign factor	Suc- tion	Industry standard	Page
	LIBECCIO EN ISO 3861	19 - 80	-30 / +70 wet and dry	wet and dry sand and cement	BR/NR	textile	SBR/NBR	10	4		EN ISO 3861	~; ~
Mat Hand	BETON 80	51 - 125	-40/+70	-40 / +70 high pressure concrete pumping	NR/SBR	steel wire	NR/SBR	80	2.5			~ ~
erial dling	CERGOM	25 - 200	-30/+70	-30 / +70 high abrasive materials	CERAMIC	textile + copper wires	SBR/NBR	9	m	yes		~;~
J	ASPIREX	20 - 100	-15/+60	-15 / +60 suction equipment	PVC	PVC wire	PVC			yes		~ ~
	DRINKPRESS WB/L 10	10 - 25	-20 / +100	-20 / +100 food & beverage, wash-down	NBR	textile	NBR/PVC	10	4		FDA - EC	~;~
Be	GAMBRINUS UPE SM EN12115	19 - 100	-20 / +100	-20 / +100 food & beverage	UHMWPE	textile + copper wires	EPDM	16	4	yes	**EN 12115 - FDA - DM	$\stackrel{<}{\overset{<}{\succ}}$
vera	GAMBRINUS BLUE 10	19 - 80	-30/+80	-30 / +80 fatty food & beverage	NBR	textile	NBR/PVC	10	m		* BfR - DM - FDA - EC	~;~
ige (GAMBRINUS BLUE SM 10	19 - 102	-30 / +80 fatty food &	fatty food & beverage	NBR	textile	NBR/PVC	10	m	yes	* BfR - DM - FDA - EC	~; ~
& Fo	GAMBRINUS RED SM 10	19 - 102	-40 / +120	-40 / +120 wine and soft drinks food & beverage	EPDM	textile	EPDM	10	с	yes	* BfR - DM - FDA - EC	~; ~;
od	VINITRESS	6 - 50	-20 / +60	-20 / +60 food & beverage	PVC	textile	PVC	20	co		EC 90/128 CLASS A-B-C	
	APERSPIR	12 - 150	-10/+60	-10 / +60 food & beverage	PVC	steel wire	PVC	15	с	yes	EC 90/128 CLASS A-B-C	~; ~
	GST II Black 15	5 - 38	-40 / +100 compressed	compressed air, non aggressive liquids	EPDM	textile	EPDM	15	4			~;>
	GST II Red 15	6.5 - 38	-40 / +100 compressed	compressed air, non aggressive liquids	EPDM	textile	EPDM	15	4			~;~
	GST II Black 20	6.5 - 25	-40 / +100 compressed	compressed air, non aggressive liquids	EPDM	textile	EPDM	20	4			$\stackrel{<}{\stackrel{<}{\succ}}$
	PYTHON N/L 20	13 - 25	-40 / +120 multipurpose	multipurpose	EPDM	textile	EPDM	20	с			~ ~
Mu	PYTHON NV/L 20	10 - 50	-40 / +120 multipurpose	multipurpose	EPDM	textile	EPDM	20	m			~ ~
ltipu	PYTHON NY/L 30	6 - 100	-40 / +120 multipurpose	multipurpose	EPDM	textile	EPDM	30	m			~; ~;
rpos	JUMBO N/L	13 - 25	-40 / +120 multipurpose	multipurpose	EPDM	textile	EPDM	20	m			~ ~
se&	MINIERA 20 MSHA	19 - 50	-30/+80	-30 / +80 compressed air, non aggressive liquids	SBR/NBR	textile	CR	20	с		MSHA	~; ~;
Air	E-Z FORM TM MP	12.7 - 75	-34/+120	-34 / +120 high flexible hose for multipurpose	NBR	textile	CR/NBR	2	4	yes		$\stackrel{<}{{\searrow}}$
	OILPRESS N/L 20	6 - 25	-35 / +100 multipurpose	multipurpose	NBR	textile	NBR/PVC	20	c			_ ∼
	APERFRUT 20	13 - 19	-15/+60	-15 / +60 agricultural spray	PVC	textile	PVC	20	4			$\stackrel{\wedge}{\stackrel{\scriptstyle <}{\scriptstyle \sim}}$
	APERFRUT 40	10	-15/+60	-15 / +60 agricultural spray	PVC	textile	PVC	40	m			~; ~;
	APERFRUT 80	8 - 13	-15/+60	-15 / +60 agricultural spray	PVC	textile	PVC	80	2.5			$\stackrel{<}{\stackrel{<}{\succ}}$

Technical Handbook

Rubber Hose Construction

Tube

It is the innermost rubber or plastic element of the hose. Must be resistant to the materials it is intended to convey. The characteristics of the rubber or plastic compound and the thickness of the tube depend on the service in which the hose will be used.

Reinforcement

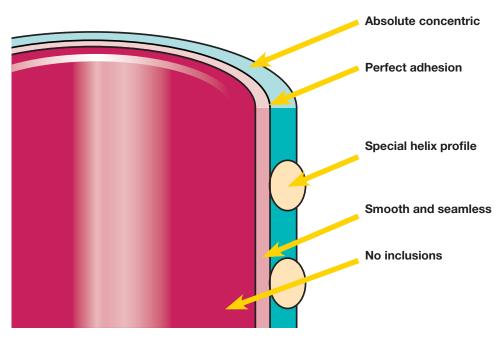
Can be textile, plastic or metal, alone or in combination, built into the body of the hose to withstand internal pressures, external forces or combination of both.

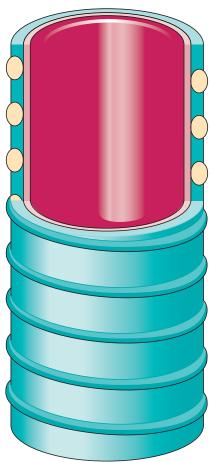
Cover

It is the outer element and can be made of rubber, plastic or textile materials. The function of the cover is to protect the hose from damage and environment.

Long Length (LL) Production method:

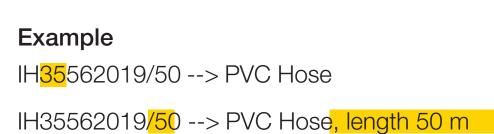
Seamless extruded hoses without or on flexible mandrel and eventually white lead vulcanization with synthetic textile yarn reinforcement for standard production up to 100 m and internal diameter up to I.D. 35 mm.


Mandrel Made (MM) Production method:


Hose produced on a rigid mandrel with a reinforcement of textile fabrics or steel braids, with or without steel wire helix, for standard production length up to 40 m and internal diameter range from I.D. 19 mm to I.D. 200 mm.

PVC Hose Construction

Flexible hose having a rigid PVC spiral or a steel wire reinforcement spiral embedded in a PVC wall.



Hose Part Number Description

IH <mark>35</mark>	> PVC Hose	
IH <mark>30</mark>	> Long Length Rubber Hose	
	> Mandrel made Rubber Hose > Mandrel made Rubber Hose	
IH <mark>7</mark>	> Global Hose Series	

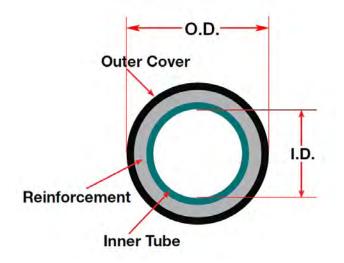
IH35562019/0 --> PVC Hose, length: variable

Hose to be ordered in coils.

Conversion Chart

	Unit	Base Unit	Conversion Unit	Factor
	1 inch	in	mm	25.4
L o north	1 millimetre	mm	in	0.03934
Length	1 foot	ft	m	0.3048
	1 metre	m	ft	3.28084
	1 square-inch	sq in	Cm ²	6.4516
Area	1 square-centimetre	cm ²	sq in	0.1550
	1 gallon (UK)	gal	I	4.54596
	1 litre	I	gal (UK)	0.219976
Volume	1 gallon (US)	gal	I	3.78533
	1 litre	I	gal (US)	0.264177
Waight	1 pound	dl	kg	0.453592
Weight	1 kilogramme	kg	lb	2.204622
	1 pound foot	lb ● ft	kg ● m	1.488164
	1 newton metre	kg ● m	lb ● ft	0.671969
Torque	1 pound per square inch	psi	bar	0.06895
	1 bar	bar	psi	14.5035
	1 pound per square inch	psi	MPa	0.006895
	1 mega pascal	MPa	psi	145.035
	1 kilo pascal	kPa	bar	0.01
Pressure	1 bar	bar	kPa	100
	1 mega pascal	MPa	bar	10
	1 bar	bar	MPa	0.1
	1 foot per second	ft / s	m / s	0.3048
Velocity	1 metre per second	m / s	ft / s	3.28084
	1 gallon per minute (UK)	gal / min.	I / min.	4.54596
	1 litre per minute	I / min.	gal / min. (UK)	0.219976
Flow rate	1 gallon per minute (US)	gal / min.	l / min.	3.78533
	1 litre per minute	I / min.	gal / min. (US)	0.264178
Tomperature	Fahrenheit degree	°F	°C	5/9 ● (°F-32)
Temperature	Celsius degree	C°	°F	°C • (9 /5) +32

(UK) Unit of United Kingdom (US) Unit of USA



Before you spec it, STAMP it.

The hose Internal and External Diameter must be sized accurately to obtain the proper values to couple the hose with reusable or permanent fittings. The measuring system of the inside and outside diameter of the hose is universally regulated by ISO 4671 while the hose tolerances are listed in the ISO 1307 if not superseded by particular and specific other norms (i.e. EN 12115).

When specifying hose, there are two temperatures you need to identify. One is the **ambient temperature** which is the temperature that exists outside the hose in the application where it is being used; the other is the **media temperature** which is the temperature of the media conveyed through the hose. Very high or low ambient temperatures can have adverse affects on the hose cover and reinforcement materials, resulting in reduced service life. Media temperatures can have a much greater impact on hose life. For example, rubber loses flexibility if operated at high temperatures for extended periods.

Before selecting a hose, it is important to consider how the hose will be used. Answering the following questions may help:

- Which is the media conveyed?
- What type of equipments are involved?
- Is it a static or dynamic application?
- Are there any routing constrains?
- Do you need particular cover features?
- Should the hose comply with any industry or government standards?
- Which are the electrical hose conductivity/ resistance requirements?

Sometimes specific applications require hoses specific dimensions, features or performance characteristics. For example, applications where hoses will encounter rubbing or abrasive surfaces, would be best handled by our family of abrasion resistant hose. When application space is tight, bend radius is another important consideration. We offer hoses with increased flexibility and smaller outer diameters enabling faster, easier routing in small spaces, reducing both hose length and inventory requirements. Industry standards set specific requirements concerning construction type, size, tolerances, burst pressure, and media compatibility. You must select a hose that meets the legal requirements as well as the functional requirements of the application.

What will the hose convey? Some applications require the use of specialized oils or chemicals. The hose you order must be compatible with the medium being conveyed. Compatibility must cover the inner tube, the cover, hose fittings, and o-rings as well. Use the Oil and Fuel and Chemical Resistance Chart you find in this section to select the correct components of the hose that will be compatible with your system's media.

PRESSURE

Hose selection must be made so that the published maximum working pressure of the hose is equal to or greater than the maximum system pressure. Surge pressures or peak transient pressures in the system must be below the published maximum working pressure for the hose.

Each Parker hose has a pressure rating which can be found on the HOSE SELECTION MATRIX. Burst pressure ratings are not an indication that the product can be used above the published maximum working pressure. It is for this reason that the burst pressure ratings have been removed from the hose charts within the catalog. However the burst pressure is indicated by the design factor of each hose type.

Standards

ABYC

WAVEMASTER™

BfR XXI cat. 2

GAMBRINUS BLUE 10 GAMBRINUS BLUE 10 SM GAMBRINUS RED 10 SM POLIAX PHARMA

CARB

WAVEMASTER™

CE

WAVEMASTER™

DIN 73411

RADIOR DIN 6

DIN 74310

AIRBRAKE DIN 74310

DM 21/03

GAMBRINUS BLUE 10 GAMBRINUS BLUE 10 SM GAMBRINUS RED 10 SM GAMBRINUS UPE SM EN 12115 POLIAX PHARMA

DM 220 26/04/93

GAMBRINUS UPE SM EN 12115

EC 1935:2004

GAMBRINUS BLUE 10 GAMBRINUS BLUE 10 SM GAMBRINUS RED 10 SM

EU 10/2011

VINITRESS APERSPIR

EN 12115

CARBOCORD EN 12115 CERVINO EN 12115 CHEMIOEL EN 12115 GAMBRINUS UPE SM EN 12115 POLIAX D EN 12115 POLIAX D SM EN 12115 POLIAX F EN 12115 POLIAX UPE CON SM EN 12115 POLIAX UPE CON SM OND EN 12115

EN ISO 3821

AUTOGENE EN ISO 3821 NR/L - NB/L 20 PROPANPRESS EN ISO 3821 NA/L 20

EN ISO 3861

LIBECCIO EN ISO 3861

EN ISO 6134 VIGOR 2 EN ISO 6134 Type 2/A

EN ISO 7840 WAVEMASTER™

EPA

WAVEMASTER™

European Pharmacopoeia POLIAX PHARMA

MSHA

MINIERA 20 MSHA

FDA

DRINKPRESS WB/L 10 GAMBRINUS BLUE 10 GAMBRINUS BLUE 10 SM GAMBRINUS RED 10 SM GAMBRINUS UPE SM EN 12115 POLIAX F POLIAX PHARMA

NMMA WAVEMASTER™

SAE J 30 R7 CARBOPRESS SAE J 30 R7

SUPER-FLEX® FL SUPER-FLEX® FL-7

SAE J 20 R2 - D1 E-Z FORM™ GS

SAE J 20 R3 Class A SERIES 6722

SAE J 30 R14T2 SUPER-FLEX® FL SUPER-FLEX® FL-7

SAE J1527 A1-15 WAVEMASTER™

UNI CIG 7140 CARBO G NY/L 10

USCG A1 WAVEMASTER™

USP XXXII class - VI requirements POLIAX PHARMA POLIAX F

Guidelines to the Use and Cleaning of Food and Pharma Rubber Hose

The hoses offered in our catalogue are manufactured in accordance with the best production practices, observing the international norms and specifications regulating this sector to guarantee safety, performance, quality and hygiene.

Transport, storage, handling, usage and media may contaminate the hose and affect its performance.

Therefore Parker recommends cleaning and sanitizing the hose prior to and after each use to maintain hose efficiency and prevent harmful contamination.

However our suggestions are superseded by specific local government regulations and industry standards.

Cleaning and sanitizing steps:

- flush with hot drinking water
- Cleaning process with detergents/chemicals
- Rinse with drinking water at 20 °C for max 10 min
- Sterilization process
- Rinse with drinking water at 20 °C for max 10 min
- Check to determine that all residuals have been eliminated

The frequency depends on the type of food and liquid conveyed and environment condition.

The frequency and time of exposure to detergents/ disinfectants may compromise the service life of the hose. Thus we recommend regular inspection of the hose to evaluate its physical conditions.

Media	Compound	Concentration	Temperature
Hot Water	NBR, UPE, EPDM, SILICONE	-	Up to 90 °C
	NBR		Up to 110 °C – max 10 min
Steam	EPDM, UPE, PTFE	-	Up to 130 °C – max 30 min
	SILICONE		Up to 135 °C – max 18 min
		2%	Up to 65 °C
Alkaline Solution	NBR, SILICONE	4%	Up to 25 °C
(Caustic Soda)	EPDM, UPE, PFTE	2%	Up to 85 °C
	EPDIVI, UPE, PFTE	5%	Up to 25 °C
		0,1%	Up to 65 °C
Nitvia Apial	NBR, SILICONE	2%	Up to 25 °C
Nitric Acid		0,1%	Up to 85 °C
	EPDM, UPE, PFTE	3%	Up to 25 °C
Peracetic Acid	NBR, SILICONE	10/	Up to 25 °C
Peracetic Acid	EPDM, UPE, PFTE	1%	Up to 40 °C

For other cleaning media and support pls contact Parker

Oil and Fuel Compatibility

	Max Ambient				Fuel types				
Hose series	temperature °C	Fuel	Diesel	LPG-CNG	B10	B20	B100	E10	E100
CARBOCORD EN 12115	100	G up to 70°	E up to 70°	•	G up to 70°	G up to 70°	•	G up to 70°	•
CARBOPRESS N/L	100	G up to 70°	E up to 70°	X	E up to 70°	E up to 70°	E up to 70°	G up to 70°	•
Series 395 SAE J 30 R7	125	E up to 70°	E up to 100°	G up to 70°	E up to 100°	E up to 70°	G up to 70°	E up to 70°	E up to 70°
CARBURITE 10	100	E up to 70°	E up to 70°	•	G up to 70°	G up to 70°	•	G up to 70°	•
CERVINO EN 12115	100	E up to 70°	E up to 70°	•	G up to 70°	G up to 70°	•	G up to 70°	G up to 70°
CHEMIOEL EN 12115	100	E up to 70°	E up to 70°	•	G up to 70°	G up to 70°	•	G up to 70°	G up to 70°
E-Z FORM™ HT	150	E up to 120°	E up to 120°	•	E up to 120°	E up to 120°	G up to 100°	G up to 70°	G up to 70°
E-Z FORM™ MP	121	E up to 100°	E up to 100°	•	E up to 100°	E up to 100°	•	G up to 70°	G up to 70°
OILPRESS N/L	120	G up to 70°	E up to 100°	G up to 70°	E up to 100°	E up to 70°	E up to 70°	G up to 70°	E up to 70°
SUPER-FLEX® FL	125	E up to 100°	E up to 100°	•	E up to 100°	E up to 100°	E up to 100°	E up to 100°	G up to 100°
SUPER-FLEX® FL-7	125	E up to 100°	E up to 100°	•	E up to 100°	E up to 100°	G up to 100°	E up to 100°	G up to 100°
TBE	90	E up to 70°	E up to 70°	•	G up to 70°	G up to 70°	X	E up to 70°	G up to 70°
TBSE	100	E up to 70°	E up to 70°	G up to 70°	G up to 70°	G up to 70°	X	E up to 70°	G up to 70°
WAVEMASTER™	100	E up to 70°	E up to 70°	•	E up to 70°	E up to 70°	E up to 70°	E up to 70°	G up to 70°

Fuel Diesel LPG-CNG	max 50 % Aromatic (Aliphatic /Aromatic + MBTE) Std mineral Diesel Liquefied petroleum gas or Compressed Natural gas
B10	Biodiesel 10 % in std diesel
B20	Biodiesel 20 % in std diesel
B100	Biodiesel 100 %
E10	Ethanol Alcohol 10 % in Fuel
E100	Ethanol Alcohol 100 %

The indicate temperature is related to the Media and not to the ambient

Conductive Value Table

As for ISO 8031

R<10 ⁶	Conductive Compound
10 ³ < R < 10 ⁸	Antistatic Compound
R > 10 ⁸	Insulating Compound

Electrical Properties of Rubber Hose

Electrical Conductivity

Industrial hoses generally fall into three categories:

conductive, nonconductive, or somewhere in-between. Because of its unique properties, it is possible for rubber to be nonconductive at low voltage and conductive at high voltage. When using a hose in an application that has electrical resistance requirements (low electrical resistance for conductive applications or high electrical resistance for nonconductive applications), always select a hose that is specifically designed to meet the specific need. Since conductivity or no conductivity is not a consideration for many applications, electrical resistance ratings do not exist for many hoses.

Conductive & Antistatic Hose

Static electricity is generated by the flow of material (even some liquids) through a hose. As the material flows, molecules collide and generate friction, which creates minute amounts of electrical charge (excess electrons). The charge accumulates potential energy at the delivery end the hose (coupling/nozzle). The amount of charge increases with material volume and linear velocity, coarseness of the material, and length of the hose. If not properly grounded, the acumulated charge (potential energy) will seek its own ground. The charge will be attracted to external materials in proximity (such as a steel storage container); if not properly grounded, the electrons may arc (jump) to the external material, igniting volatile materials in the hose, or in proximity to the hose. Electrically conductive wires and conductive rubber components are used in hose to prevent static electricity build-up and discharge as a spark. It is essential that the user determine the need for static bonded hose based on (a) the intended use of the hose, (b) instructions from the company's safety division, (c) the insurer, and (d) the laws of the localities and states in which the hose will be used. Some types of hose include a helical or static wire(s). This wire can be used for electrical continuity provided that proper contact is made and maintained between it and the hose couplings.

Nonconductive Hose

Nonconductive hose constructions are those that resist the flow of electrical current. In some specific applications, especially around high voltage electrical lines, it is imperative for safety that the hose be nonconductive. Unless the hose is designed particularly to be nonconductive and is so branded, do not conclude that it is nonconductive. Many black rubber compounds are inherently and inadvertently conductive. Nonconductive hose is usually made to a qualifying standard that requires it to be tested to verify the desired electrical properties. The hose is frequently (but not necessarily) nonblack in colour and clearly branded to indicate it is designed for nonconductive applications.

WARNING!

Unless a hose is described as, or specifically and clearly branded to be conducting or nonconducting, assume that the electrical properties are uncontrolled.

Properties of Basic Rubber Compounds

This table provides some information on the general properties of the most common rubber compounds. Most compounds used in the manufacture of rubber hose are made of different basic rubbers, each contributing to the physical properties of the finished product.

ASTM D 1418	Chemical Name	Properties
CR	Chloroprene	Excellent weathering and ozone resistance, flame retarding, abrasion resistance. Good resistance to compressed air and to oil.
CSM	Chloro-sulfonyl-polyethylene	Excellent resistance to ozone, weathering and acid, particularly of the coloured compounds. Resistant to petroleum based fluids.
EPDM	Terpolymer of ethylene-propylene-diene	Good resistance to heat, ageing and abrasion. Poor resistance to petroleum based fluids.
EPM	Copolymers of ethylene and propylene	Excellent resistance to heat, ageing, abrasion and ozone. Good resistance to many chemicals. Poor resistance to aromatics.
FKM	Fluorine rubber	Excellent resistance to a wide range of chemicals and to heat. Poor physical properties.
liR	Isobutene-isoprene	Good resistance to chemicals, such as alcohols, ketones and esters.
NBR	Acrylonitrile-butadiene	Excellent oil resistance good aromatics and solvents resistance.
NR	Natural rubber	Good physical properties including abrasion and low temperature resistance. Poor resistance to petroleum based fluids.
SBR	Styrene-butadiene	Good physical properties with resistance to heat and abrasion. Poor resistance to petroleum based fluids.
NBR/PVC	Acrylonitrile-butadiene-vynil-chloride	Good resistance to oil and aromatics. Recommended as hose cover, when a good weathering, ozone and abrasion resistance is required.
UHMWPE	Ultra high molecular weight polyethylene	Excellent abrasion resistance and very low coeffi- cient of friction. Excellent resistance to chemicals, oil and aromatic fuels. Biologically inert and suitable for foodstuffs delivery.
PTFE	Polytetrafluoroethylene	Excellent resistant against the majority of chemicals, also at high concentration. Superior resistance to heat. Very low friction. Great mechanical properties.
Silicone (VMQ)	Polysiloxane	Outstanding Heat and cold resistance. Resistance to oils, solvents and other chemicals. Electrical insulation.

Chemical Resistance Table

The following table is essentially based upon the most updated technical data available, on information from raw material suppliers, as well as some International Standards, e.g. ISO TR 7620, EN 12115, and other publications.

Due to the big variety and amount of different chemical products, the given ratings are only partly based on our own tests. Consequently, the chart is given as a guidance only, and it cannot be assumed as a guarantee, expressed or implied, for the suitability of a product for a specific application. This is due to the widespread range of parameters which are not under our direct control like temperature (internal and external) pressure (constant or peaks) frequency of service and working environment.

For the same reasons, it is impossible to give scientifically based indications concerning service life of hoses, and to determine a generally valid replacement date. This can be verified for instance with periodical hydrostatic tests and a visual check. When in doubt please contact our technical service.

Ratings are based on room temperature.

Parker will cooperate by supplying sampling for tests, and carrying out tests with special chemical products.

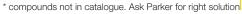
WARNING

The service life of rubber hoses is not endless. Consequently the user must periodically check the suitability of a rubber hose for the intended application, particularly in the presence of dangerous or polluting chemical products or when using the hose at elevated pressures and/or temperatures. Continuous use at the highest allowed pressures and temperatures dramatically reduces the service life of a rubber hose.

After use hose must be emptied out and washed down.

Many chemical products can cause severe injuries to people or damage to property, or risks of environmental pollution if the hose leaks or bursts.

Trade Name	Description	ASTM Codes
Butyl	Isobutylene-Isoprene	IIR
CPE	Chlorinated Polyethylene	СМ
EPDM	Ethylene-Propylene-Diene	EPDM
Hypalon	Chlorosulfonated Polyethylene	CSM
Hytrel	Thermoplastic Polyester	TPC-ET
Natural	Natural Rubber	NR
Neoprene	Polychloropren	CR
Nitrile	Acrylonitrile	NBR
Nylon	Nylon Polymer	-
SBR	Styrene-Butadiene	SBR
Teflon	Fluorocarbon Resin	PTFE
UHMWPE	Ultra-High Molecular Weight Polyethylene	-
Viton	Floroelastomer	FKM
XLPE	Cross-Linked Polyethylene	XPE


* compounds not in catalogue. Ask Parker for right solution

KEY

E = Excellent G = Good C = Conditional X = Unsatisfactory

TUNDEDANDL E C <thc< th=""><th>Chemical or Material Conveyed</th><th>Butyl</th><th>CPE</th><th>EPDM</th><th>CSM</th><th>TPC-ET</th><th>Natural</th><th>Neoprene</th><th>Nitrile</th><th>Nylon</th><th>SBR</th><th>ТРV</th><th>PTFE</th><th>UHMWPE</th></thc<>	Chemical or Material Conveyed	Butyl	CPE	EPDM	CSM	TPC-ET	Natural	Neoprene	Nitrile	Nylon	SBR	ТРV	PTFE	UHMWPE
1.4-000XMPE C <thc< th=""> C C C C</thc<>						F	z	Ne	2	2				⇒
1 AMMOQ PROPANCL C <thc< th=""> C C</thc<>														
1-AMMOQUIANE X <t< td=""><td>,</td><td></td><td></td><td>G</td><td></td><td></td><td></td><td>Х</td><td></td><td>E</td><td>Х</td><td></td><td></td><td></td></t<>	,			G				Х		E	Х			
1-AMMORPHIANE C <				0										
Interfact Interfact X <thx< th=""> X X</thx<>											Х			
1-BROMOSIMETHYLENTABE X				Х	-									
1 HERMONDULTANE X				V										
1-010PO2 MEIMUL PROPANE X Z <thz< th=""> Z <thz< th=""> Z</thz<></thz<>				^				~						
I-O-EDANOL C K X <thx< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thx<>														
I-PECNAOL C N E N C X E N I I I 2!PANNOETH-LAMINOETH-ANOL E G				Х				Х		F				
I+HEDMACONAL E <t< td=""><td></td><td></td><td></td><td>~</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></t<>				~						-				
2 2 C		Ū	E		-		Ū	~~	-				-	
2:2ETHOXYETHOXYETHAXOL E		E			G		G		G					
2.4.0.5GC-PENTYLPHENOL F <t< td=""><td></td><td></td><td></td><td>G</td><td></td><td></td><td></td><td>С</td><td></td><td>Е</td><td>G</td><td></td><td>Е</td><td></td></t<>				G				С		Е	G		Е	
2.4.0.SEC-PENTYLEPIENOL F <	2 (2ETHOXYETHOXY) ETHYL ACETATE	G		Х	G		Х	Х	С		Х		Е	
2-OHLOROPHYDENZENE C			E											
:	2-AMINOETHANOL	E		G	G		G	G	G				Е	
2-0HLOROPENDEME X <td>2-CHLORO-1-HYDROXY-BENZENE</td> <td></td> <td>С</td> <td></td>	2-CHLORO-1-HYDROXY-BENZENE		С											
2:FIHONYETHANOL G G G K <td></td> <td></td> <td>G</td> <td></td> <td></td> <td>Х</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Х</td> <td></td> <td></td>			G			Х						Х		
2:=THONYETHY ACETATE G X G X<	2-CHLOROPROPANE	Х		Х	Х		Х	Х	Х	Х	Х		E	
2-ETHYL (BUTYRALDEHYDE) G K <	2-ETHOXYETHANOL				-			-	G					
2-ETHYL-1+EXANOL E F E F E F E <td></td> <td></td> <td>Х</td> <td>G</td> <td></td> <td>Х</td> <td></td> <td>Х</td> <td></td> <td>G</td> <td>Х</td> <td></td> <td></td> <td></td>			Х	G		Х		Х		G	Х			
2-ETHYLHEXANOL ADETATE C V G V C V V <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>														
2-ETHYLHENYL ACETATEEKK				E				E			E	E		
2-OCTANONE G G X														
3-BRIMOPPOPENE X C Z <thz< th=""> Z <thz< th=""></thz<></thz<>														
3-CHLORO-2-METHYL PROPANE C G C														
3-CHLOROPROPENE C V X X X X X G V E V E 4-HYDROXY-4-METHYL-2-PENTANONE E C C C C C C X X G C V E Z Z X X X G C V Z X X K		Х	0		Х		Х	Х	Х				E	
A-HOPROXY-4-METHYL-2-PENTANONEECCC		0	G	V	V		V	V	0		F		F	
ACETALDEHYDE E E C G X X E X E X E X E X E X G X G X G X G X G X G X G X G X G X G X G X G X G X G X K						C				G				
ACETAMIDEACETAMIDEGGGGGGGCGCGCGCGCGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGG <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>U</td> <td></td> <td></td> <td></td> <td></td> <td>E</td> <td></td> <td>G</td>					-		U					E		G
ACETIC ACID, GLACIALGGEGGCEXBNCCGEEACETIC ACID 30 %<		E			U	G			^	E	^	E	E	E
ACETIC ACID 10 % F <td></td> <td>G</td> <td>F</td> <td></td> <td>C</td> <td>F</td> <td>X</td> <td></td> <td>G</td> <td>X</td> <td>C</td> <td>G</td> <td>F</td> <td>E</td>		G	F		C	F	X		G	X	C	G	F	E
ACETIC ACID 30 %III <td></td> <td>E</td>														E
ACETIC ACID 50 %CEEEEECCCCCCCXVGEACETIC ANHYDRIDEGEGEGECCGXXXGECACETONCNIDEGEXCCCXXEECAXEEEAACETONECVANOHYDRINECCCKXKEEEAACEEAAACEEAAAAEEEAAAAAEEEAAAAAEEEAAAAAEEEAAA<					-	~	U		~	-		U	-	E
ACETIC OXIDEGGGBEGXCC <th< td=""><td></td><td>E</td><td>E</td><td></td><td>Е</td><td>С</td><td>Х</td><td></td><td>С</td><td>С</td><td>Х</td><td></td><td>G</td><td>E</td></th<>		E	E		Е	С	Х		С	С	Х		G	E
ACETONEEGEGEXCCXXECEEACETONE CYANOHYDRINEECCBXCEEEEEAAAEEEEAAAFFFAAKKKKKKKKKFFAAAFFGCKKKKKKKFFAAAFFGCKKK<			E	G	Е	С	С	G	Х	Х	Х	G	E	G
ACETONE CYANOHYDRINEECCCBXCEEEACETONITRILEEFFGFGFGFFF<	ACETIC OXIDE	G		В	Е		Х					В	Е	
ACETONITRILEEGG <th< td=""><td>ACETONE</td><td>E</td><td>G</td><td>E</td><td>Х</td><td>С</td><td>С</td><td>Х</td><td>Х</td><td>E</td><td>С</td><td>E</td><td>Е</td><td>E</td></th<>	ACETONE	E	G	E	Х	С	С	Х	Х	E	С	E	Е	E
ACETOPHENONEGUEXUXXXXUXEFACETYL ACETONEEGGEXVXXXXEEEACETYL CHLORIDEXEGGVXXXXXXCEEACETYL OXIDEEGGGGGGGKXXXXCEEACETYLENECCVGGGGKXXXXXXZEEACETYLENEDICHLORIDECVCCGGXXXXXXXXZEEACETYLENE TETRACHLORIDECVVKXXXXXXXXXXZZ	ACETONE CYANOHYDRIN	E			С		С	В	Х			E	E	G
ACETYL ACETONEEGEGEXIXXXXII<	ACETONITRILE	E		E	G		В	Е	С			E	E	
ACETYL CHLORIDEXECVXXXXXCEACETYLENECEGGXCCXXXXGGEACETYLENEDICHLORIDECCGCXXXXXXCEEACETYLENE DICHLORIDECCXX <td></td> <td>Х</td>														Х
ACETYL OXIDEEGKGKCKKGGEACETYLENEEGGGGGGEECEECEECEECFFF<			-		Х		Х				Х			E
ACETYLENEGGEGGGGGEECEEEACETYLENE DICHLORIDECCCXXX <td></td> <td></td> <td>E</td> <td></td> <td></td> <td>Х</td> <td></td> <td>Х</td> <td></td> <td>Х</td> <td>Х</td> <td></td> <td></td> <td>G</td>			E			Х		Х		Х	Х			G
ACETYLENE DICHLORIDECCXXXXXXIII														E
ACETYLENE TETRACHLORIDEXX <t< td=""><td></td><td></td><td>G</td><td></td><td></td><td>G</td><td></td><td></td><td></td><td>E</td><td>С</td><td>E</td><td></td><td>E</td></t<>			G			G				E	С	E		E
ACROLEINEIEGIGCICIIIACRYLIC ACIDIEEII </td <td></td>														
ACRYLIC ACIDICEIC<											0			X
ACRYLONITRILEXEXCCCIECIIIADIPIC ACIDIIIEEEEEII <td< td=""><td></td><td>E</td><td>-</td><td>E</td><td>G</td><td></td><td>G</td><td>C</td><td>C</td><td></td><td>C</td><td></td><td>E</td><td>Х</td></td<>		E	-	E	G		G	C	C		C		E	Х
ADIPIC ACIDADIPIC ACIDIII		V		V	0		0			F	0		F	0
AIR +149 °C (+300 °F)GGGGGXGGXEIALK-TRIXXX <td></td> <td>~</td> <td>E</td> <td></td> <td>C</td> <td></td> <td></td> <td>Г</td> <td>-</td> <td>E</td> <td>C</td> <td></td> <td></td> <td>С</td>		~	E		C			Г	-	E	C			С
ALK-TRIXX <td></td> <td>G</td> <td></td> <td></td> <td>G</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>V</td> <td>E</td> <td>E</td> <td>Х</td>		G			G						V	E	E	Х
ALLYL ALCOHOLEEE <t< td=""><td></td><td></td><td></td><td>G</td><td></td><td></td><td></td><td>G</td><td></td><td></td><td>^</td><td>E</td><td>E</td><td>^</td></t<>				G				G			^	E	E	^
ALLYL BROMIDEXXX <t< td=""><td></td><td></td><td></td><td>F</td><td></td><td></td><td></td><td>F</td><td></td><td></td><td></td><td></td><td></td><td>Е</td></t<>				F				F						Е
ALLYL CHLORIDE I G I X I G G I				L				L	L					G
ALUM E			G						G		G			G
ALUMINUM ACETATE (AQ) G G E E F E G G X F E F ALUMINUM CHLORIDE (AQ) 40 % G C F E E G X F		E		Е				Е		G	G			E
ALUMINUM CHLORIDE (A) 40 % G G C I I E E E E G X I					_					C.	Х			E
ALUMINUM FLUORIDEEEEEEEEEGEEALUMINUM FORMATEGGCXXXCCCEEALUMINUM HYDROXIDEEEEGEEEEEEGCEE										Х				E
ALUMINUM FORMATE G G X				Е	Е						Е		Е	E
ALUMINUM HYDROXIDE E E G G G E														E
				Е	G			Е	Е	G	G			Е
	ALUMINUM NITRATE (AQ)	E	E	E	E		E	E	E		E		E	E
														В

Chemical or Material Conveyed	Butyl	CPE	EPDM	CSM	TPC-ET	Natural	Neoprene	Nitrile	Nylon	SBR	ТРV	PTFE	UHMWPE
ALUMINUM SULFATE (AQ)	E	E	E	E	G	E	E	E	E	G	E	E	Е
ALUMS-NH3-CR-K AMINES – MIXED	E G		E G	E X	G	E G	E	E X	С	E G		E	E
AMINO XYLENE	G		C	~	u	u		~		u			
AMINOBENZENE	G	G	Ŭ						С				
AMINODIMETHYLBENZENE	G	С										Е	
AMINOETHANE	G		Е	С		С	Х	Х		С		Е	
AMMONIA LIQUID			Е				Е						G
	-		E	0		_	E	0	0	_		_	G
AMMONIUM CARBONATE (AQ) AMMONIUM CHLORIDE (AQ)	E	G	E	G G	Е	E	E	G G	G	E	Е	E	E
AMMONIUM HYDROXIDE	E	E	E	E	E	E	E	G		E	E	E	E
AMMONIUM NITRATE (AQ)	E	G	E	E	G	Е	Е	Е	G	Е		E	E
AMMONIUM PHOSPHATE, DIBASIC	Е	E	Е	Е		Е	Е	Е	Е	Е		Е	E
AMMONIUM SULPHATE (AQ)	E	Е	Е	Е	G	Е	Е	Е	G	G		Е	Е
AMMONIUM SULPHITE	E		E	E		E	E	Е		E		Е	
AMMONIUM THIOSULPHATE	E		E	E	0	E	E	E	0			E	_
	G		E	X	С	Х	Х	Х	G	Х	Х	E	E
AMYL ACETONE AMYL ALCOHOL	G E	E	Е	X E	E	X E	Е	G	Е	Е	Е	E	Е
AMYL AMINE	G	E	E	C	E	C	E	C	E	E	E	E	E
AMYL BROMIDE	u			0		0		0				E	
AMYL CHLORIDE	Х	С	Х	Х		Х	Х		Е	Х		E	Е
AMYL ETHER				С				С				Е	
ANETHOL	Х	Х		Х		Х			G			Е	G
ANILINE	E	G	G	Х	Х	Х	Х	Х	С	Х		Е	E
ANILINE DYES	G		G	G		G	С	Х	Х	G		E	E
ANILINE OIL	G	G	С	0	0		0	_	_	N	-	E	_
	C E		E	C G	G		G X	E	E	Х	E	E	E
ANTIMONY CHLORIDES AQUA REGIA	X		G	X		Х	X	G X		Х		E	Х
ARGON	G		E	X	Е	X	X	E	Е	X		E	E
AROMATIC HYDROCARBONS	G		-	~	-	~	~	-	-	~		_	C
ARSENIC ACID	Е	Е	Е	Е		G	Е	Е	G	Е		G	E
ASPHALT	Х		Х	Х	С	Х	Х	Х	Е	Х	Е	Е	Х
ASTM FUEL A	Х	E	Х	G	Е	Х	G	Е	E	Х	Х	Е	G
ASTM FUEL B	Х	G	Х	Х	E	Х	Х	Х	E	Х	Х	E	G
ASTM FUEL C	X	C E	X X	X X	E	X X	X G	F	E	X X	X X	E	G
ASTM OIL NO. 2 ASTM OIL NO. 3	X X	E	X	G	E	X	C	E	E	X	X	E	E
ASTM OIL NO. 4	X		X	X	L	X	X	G	L.	X	~	L	E
ASTM OIL NO. 1	Х	Е	Х	G	Е	Х	E	E	Е	Х	Х	Е	E
AUTOMATIC TRANSMISSION FLUID	Х		Х	С	Е	Х	G	Е	G	Х	Х	Е	E
BANANA OIL			G	С				Х		Х		Е	E
BARIUM CHLORIDE (AQ)	E	G	E	E	G	E	Е	Е	G	E		Е	E
BARIUM HYDROXIDE (AQ)	E	G	E	E	G	E	E	E	G	E		E	E
BARIUM SULFIDE (AQ) BEER	E		E	E		E	E G	E		G E		E	E
BEET SUGAR LIQUORS	E	G	E	E	G	E	G	E	Е	E		E	E
BENZAL CHLORIDE	G	u	L	L	u	L	u	L	L.	L		E	E
BENZALDEHYDE	G		Е	Х	G	Х	Х	Х	Е	Х	Х	E	E
BENZENE	Х	С	Х	Х	С	Х	Х	Х	G	Х	Х	Е	G
BENZENE CARBOXYLIC ACID	E			Х			Е	Х				Е	
BENZINE	Х		Х	Х		Х	С	С	G	Х		Е	
BENZOIC ACID	Х					Х	E	Х	E	Х		E	E
		С	Х		С			Х	G			E	G
BENZOTRICHLORIDE BENZYL ACETATE	E			G		V						E	G E
BENZYLACEIAIE BENZYLALCOHOL	G		G	G	С	X X	Х	Х	С	Х	Х	E	E
BENZYL CHLORIDE	X	Х	X	X	U	X	X	X	U	X	~	E	E
BENZYL ETHER	G		C	X		X	X	X		X		E	
BIS (2-CLOROETHYL) ETHER	Х			Х		Х		Х		Х		E	
BLACK SULFATE LIQUOR	G	С	G	G	G	G	G	G	С	G		Е	E
BLEACH (2 – 15 %)	G		Е	Е	G	Х	Х	Х	С	Х		Е	E
BORAX SOLUTION	E	G	E	E	E	G	E	G	G	G	-	E	E
BORIC ACID	E		E	E	E	E	E	E	G	E	E	E	E
E = excellent; G = good; C = conditional; X = unsatisfactory						* comp	bounds	not in c	atalogu	e. Ask F	Parker fo	or right :	solution

Parker

Technical Handbook

ш

_ e

-

Technical Handbook

Catalogue 4401/UK

Chemical or Material Conveyed	Butyl	CPE	EPDM	CSM	трс-ет	Natural	Neoprene	Nitrile	Nylon	SBR	ТРV	PTFE	UHMWPE
BRAKE FLUID (HD-557) 12 DAYS	G	E	E	G			G	С	E	E		E	
BRINE	E	G	E	E	G	Е	G	E	G			E	Е
BROMACIL			E										
BROMOBENZENE	Х	Х	Х	Х		Х	Х	Х		Х		E	С
BROMOCHLOROMETHANE	Х	Х	G	Х		X	Х	Х		V		E	
BROMOETHANE BROMOTOLUENE	X	Х	Х	X X		C X	Х	G		X X		E	
BUGDIOXANE	^	~		^		~				~			
BUNKER OIL	Х		Х	Х		Х	Х	Е		Х		Е	Е
BUTADIENE	X		X	X		X	X	X		X		E	E
BUTANE	X		Х	Х	Е	Х	С	E	Е	Х		E	E
BUTANOIC ACID			G	С								Е	
BUTANOL (BUTYL ALCOHOL)	G	G	G	Е	G	Е	Е	Е	G	Е	G	Е	E
BUTANONE	E	G	E	Х	E			Х	G		Х	G	E
BUTOXYETHANOL	E		E	Х		Х	Х	С				E	
BUTYL ACETATE	Х	С	Х	Х	С	Х	Х	Х	G	Х		Х	E
BUTYL ACRYLATE	Х		Х	Х		Х	Х	Х				E	G
BUTYLALCOHOL	G	G	G	E	G	E	E	E	G	E	G	E	E
BUTYL ALDEHYDE	G		G	С			С				G	E	E
BUTYL BENZYL PHTHALATE	E		-	Х		Х	~			Х		E	E
BUTYL CARBITOL	E		E	Х		Х	С	X		Х	_	E	E
BUTYL CELLOSOLVE BUTYL CHLORIDE	E		G	X X		Х	Х	С		Х	E	E	E
BUTYL CHLORIDE BUTYL ETHER	X		Х	X		X X	Х	Х		Х		E	C E
BUTYL ETHER BUTYL ETHER ACETALDEHYDE	G		X	X		X	X	Ā	Х	X		E	E
BUTYL ETHER AGETALDENT DE	X			X		X		G	^			E	E
BUTYL OLEATE	G		G	X		X	Х	X		Х		E	L.
BUTYL PHTHALATE	G		E	X		X	~	~		X		E	
BUTYL STEARATE	X		X	X		X	Х	G		X		E	Е
BUTYLENE	X		X	X	G	X	C	E	G	X		E	-
BUTYRALDEHYDE	G		С		-	Х	Х	X		Х		_	E
BUTYRIC ACID	G		G	С		Х	Х	Х		Х		Е	E
BUTYRIC ANHYDRIDE	С			G		С		С				E	
CADMIUM ACETATE	E			E		Х						E	E
CALCIUM ACETATE	E			С		Е	G	G		Х		E	E
CALCIUM ALUMINATE	E			E		Е		E				E	
CALCIUM BICHROMATE	E			С								E	
CALCIUM BISULFIDE			Х		G		С	E	G	G		E	_
CALCIUM CHLORATE	_	0	E	_	_	_	E	_	_	_		_	E
	E	G	E	E	E	E	E	E	E	E		E	E
CALCIUM HYDROXIDE CALCIUM HYPOCHLORITE	E	G G	E	G E	E C	E	E	E X	E	E X		E	E C
CALCIUM NITRATE	E	G	E	E	U	X E	C E	Ē	X	Ē		E	E
CALCIUM SULFIDE	E	Х	E	E		X	E	E	E	X		E	E
CAPRILIC ACID	C	~	L.	G		C	L	C	L	~		E	E
CARBAMIDE	G			E		E	G	G				E	-
CARBITOL	E		G	G		Х	С	G	Е	G		Е	E
CARBOLIC ACID (PHENOL)	G	G	Х	Х		Х	Х	Х	Х	Х	Х	Е	E
CARBON DIOXIDE	G		G	G		G	G	Е	Е	G		Е	E
CARBON DISULFIDE	Х		Х	Х		Х	Х	Х	Х	Х		E	E
CARBON MONOXIDE	E	G	E	Е	Е	С	Е	Е	Е	G	E	Е	E
CARBON TETRACHLORIDE	Х	С	Х	Х	Х	Х	Х	С	Х	Х	Х	E	G
CARBON TETRAFLUORIDE			G										В
CARBONIC ACID	E	Х	E	E	Х	E	G	G	G	G	Х	E	
CASTOR OIL	G	G	G	E	С	E	E	E	G	E	С	E	E
CAUSTIC SODA (SEE SODIUM HYDROXIDE)	E		E	N/	С	N	E	X	G	N	E	E	-
CELLOSOLVE ACETATE	G		G	Х		Х	Х	Х	G	Х		E	E
CELLUGUARD	E		E	Х		E	E	E	G	E		E	D
CELLULOSE ACETATE CETYLIC ACID	C	G	G	С	E	E	X G	E	С	В	E	E	В
CHINA WOOD OIL (TUNG OIL)	G X	C	X	E	G	E X	E	E	G	Х	C	E	
CHINA WOOD OIL (TUNG OIL) CHLORDANE	X	U	X	C	C	X	C	G	G	X			
CHLORINATED SOLVENTS	X	Х	X	X	0	X	X	X	X	X		Е	
CHLORINE GAS (DRY)	~	~	~	~		~	C	~	~	~		-	С
CHLORINE WATER SOLUTION (MAX. 3 %) + G108							U						E
CHLORO-2-PROPANONE	Х		E	Х		Х	С	Х		Х		Е	

Chemical Resistance Table

Technical Handbook

Channical or Material Conveyod Sol Sol Sol Sol CHUCROACETIC ACID Sol Sol Sol Sol ChuCROACETIC ACID Sol Sol Sol Sol Sol ChuCROACETIC ACID Sol Sol Sol Sol Sol ChuCROACETIC ACID Sol Sol Sol Sol Sol Sol Sol ChuCROACETIC ACID Sol Sol Sol Sol Sol Sol Sol Sol Sol Sol														
DHUBBOACETIC ADD G G G X		-		⋝	v	Ŀ	몤	ene	٩	2	~		ш	/PE
DHUBBOACETIC ADD G G G X		Buty	CPE	IDdi	CSN		latur	opre	litril	١ylo	SBF	ТР	PTFI	ΝΨ
CHUCORDENCY N C E X <thx< th=""> X <thx< th=""> X <thx< th=""> <thx< t<="" th=""><th></th><th></th><th></th><th></th><th></th><th>F</th><th>Z</th><th>Ne</th><th></th><th></th><th></th><th></th><th></th><th>∣⇒</th></thx<></thx<></thx<></thx<>						F	Z	Ne						∣⇒
CH-1000ENZENE, MONO, U, IH C C X X X X <td></td> <td></td> <td></td> <td></td> <td></td> <td>Х</td> <td></td> <td></td> <td></td> <td>Х</td> <td></td> <td>Х</td> <td></td> <td></td>						Х				Х		Х		
CHUCHORDUMANE C N <						X				-		N		
CHLORDERTMIERNZENE X <thx< th=""> X X <</thx<>	, , , ,			Х		Х		Х		E	Х	Х		
CILCOPORMANDE X <			V	V					Х		V			
CILCORDENTANE C <						V		V	V	Y		Y		
OHOLOGNEMEND CHUCPOSULATION CHUCPOSUL			~	~		~		~	~	~		~		
CHARPONDULPNIC ACDD X		Ŭ			~		~				~		-	
CHONOX CHONOX CH CH C X X <t< td=""><td></td><td>Х</td><td>Х</td><td>Х</td><td>Х</td><td>Х</td><td>Х</td><td>Х</td><td>Х</td><td>Х</td><td>Х</td><td>Х</td><td>Е</td><td></td></t<>		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Е	
CI-HOMIC PLATING SOLUTIONS X X X <thx< th=""></thx<>	CHLOROTOLUENE	Х		Х	Х		Х	Х	Х		Х		Е	G
CHORMIQNE COID G X <thx< th=""> <thx< th=""> <thx< th=""> <th< td=""><td>CHLOROX</td><td>G</td><td></td><td>G</td><td>G</td><td></td><td>Х</td><td>G</td><td>G</td><td></td><td>Х</td><td></td><td>E</td><td>G</td></th<></thx<></thx<></thx<>	CHLOROX	G		G	G		Х	G	G		Х		E	G
CH-HOMUM TROXIDE G X <thx< th=""> X X</thx<>	CHROME PLATING SOLUTIONS	Х		Х	Х		Х	Х	Х		Х			
CINNAMENE X X X X<														
CICH-DOCIADICCENDIC CADID X X X C G E X C C E E C E E C E E C E E C E E C E E C E E C E E C			Х							Х		Х		
CITHOLOGIDEXX										_				
COAL LAR X <												-		_
COALTAR X X <td< td=""><td></td><td></td><td>Х</td><td></td><td></td><td>G</td><td></td><td></td><td></td><td></td><td>E</td><td></td><td></td><td></td></td<>			Х			G					E			
COOL TAR NAMPHTHA X						v				E	V			
COCONUTOL G G C X X Z E X K <						Х		C				Х		E
CORE OVEN GAS X X X X X X X X E X X E X Z <thz< th=""> Z <thz< th=""> <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td>E</td></th<></thz<></thz<>								0						E
COOMPAGE (MONSANDTO) X X G X X G E C C										F				E
COPPER CHLORIDE E X E C E C E C E C E C E C E C E C E C E C E C E C E C E C E C E C E C C E C E C C E C E C C E C C E C C E C C C E C C C E C						X				E			U	
COOPER CVANIDE E C E C E C E C			X		-					C			F	F
COOPPER HYDRATE E C <thc< th=""> C C <</thc<>			~			L								
COPPER HVDROXIDE F C G C <td></td> <td></td> <td></td> <td>L.</td> <td></td> <td></td> <td></td> <td>L</td> <td></td> <td>G</td> <td>L.</td> <td></td> <td></td> <td></td>				L.				L		G	L.			
COPPER NITATE E K E K E E E K E E K E E K E E K E E K C E K C E K C E K C E K C E K											G			_
COPPER SULFATE F K				Е				Е						Е
COTONSEED OIL C G C G E X C G E X	COPPER SULFATE	E	Х		Е	Е	G	Е	Е	G	G		Е	_
CHEOSOTE X <	CORN OIL	G		Х	G	Е	Х	С	Е	G	Х	Е	Е	E
CRESOLS X <t< td=""><td>COTTONSEED OIL</td><td>С</td><td>G</td><td>С</td><td>G</td><td>Е</td><td>Х</td><td>С</td><td>G</td><td>E</td><td>Х</td><td></td><td>E</td><td>E</td></t<>	COTTONSEED OIL	С	G	С	G	Е	Х	С	G	E	Х		E	E
CRESYLIC ACID X	CREOSOTE	Х		Х	Х		Х	Х	G	Х	Х		E	E
CROTONALDEHYDE E X Z Z E Z <thz< th=""> Z Z Z Z</thz<>	CRESOLS	Х				Х		Х		Х		Х		
CRUDE OIL CRUDE OIL X	CRESYLIC ACID						Х		Х					
CUMENE X <th< td=""><td></td><td>E</td><td></td><td></td><td>Х</td><td></td><td>Х</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		E			Х		Х							
CUPRIC CARBONATE E I F E I C E I C E I I E E CUPRIC HYDROXIDE E F F F F G E F										E				_
CUPRIC HYDROXIDE E F				Х							Х			
CUPRIC NITRATE E E E E E G E								E						E
CUPRIC SULFATE E K				F			-	F						-
CUTTING OIL X <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Г</td><td></td><td></td><td></td></th<>											Г			
CYCLOHEXANE X X X X X X X G G X X E E CYCLOHEXANOL X K K K K K G G X X E E CYCLOHEXANONE X K K X K X K														E
CYCLOHEXANOL X X K K K G G K X K E E CYCLOHEXANONE X K C X X X X X K K X X K						F				G		X		F
CYCLOHEXANONE X <						L.								
CYCLOPENTANE X X X X X E G I I E E CYCLOPENTANOL X I X X X X I G X I E E CYCLOPENTANONE X I X X X X X I X I E E E CYCLOPENTANONE X <td></td>														
CYCLOPENTANOL X <														
CYCLOPENTANONEXXIXXXXXXIXIECYCLOPENTYL ALCOHOLXXIXXXXXGXIEDDT IN DEIONIZED KEROSENEXXXXXXXCEEXIEDECAHYDRONAPTHALENEXXXXXXXXGXXEIDECALINXXXXXXXXXGXXEXDECYL ALCOHOLXXXXXXXXGXXEXDECALINXXX <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Х</td><td></td><td></td><td>_</td></td<>											Х			_
CYCLOPENTYL ALCOHOL X													Е	
DECAHYDRONAPTHALENEXXX<	CYCLOPENTYL ALCOHOL	Х			Х		Х		G					Е
DECAHYDROXYNAPTHALENE IC IC <thic< th=""> IC IC <th< td=""><td>DDT IN DEIONIZED KEROSENE</td><td></td><td></td><td>Х</td><td>Х</td><td></td><td>Х</td><td>С</td><td>E</td><td>E</td><td>Х</td><td></td><td>E</td><td></td></th<></thic<>	DDT IN DEIONIZED KEROSENE			Х	Х		Х	С	E	E	Х		E	
DECALINXX <td></td> <td>Х</td> <td></td> <td>Х</td> <td>Х</td> <td></td> <td>Х</td> <td>Х</td> <td>Х</td> <td>G</td> <td>Х</td> <td>Х</td> <td>Е</td> <td></td>		Х		Х	Х		Х	Х	Х	G	Х	Х	Е	
DECYL ALCOHOLXXXEIIEEDECYL ALDEHYDECCXXXXXIIIEEDECYL BUTYL PHTHALATEEKXXXXXIIIEEDECYL CARBINOLEFKXXXXIIIEEE'DETERGENT, WATER SOLUTION''EKKKKKKKKKKIIEDEVELOPING FLUID (PHOTO)GGGEXKEEGGEII<			С											
DECYL ALDEHYDECCCXXXXXII<IIIIIIIIIIIIIIIIIIIIIII				Х						G	Х	Х		
DECYL BUTYL PHTHALATEEKKK								Х	E					
DECYL CARBINOLEIEIEIEIEIEIEIEIEIEIEIEIEIII<IIIIIIIIIIIIIIIIIIIIIII									X					
"DETERGENT, WATER SOLUTION"EIEIGIGIGIIEDEVELOPING FLUID (PHOTO)GGIGII<														E
DEVELOPING FLUID (PHOTO) G G G E K E E E G G E E DEXTRON X X X X X G E X X G E X X G E X X F F F F G G F				F	E	0	E	0			0			-
DEXTRONXXXXXGEXXGEDI(2ETHYLHEXYL) ADIPATEEGGXXXXXKEEEDI(2ETHYLHEXYL) PHTHALATEGGXEXZXXEXEEDIACETONE ALCOHOLEGEXCXXXEXEEEDIACETYLMETHANEEGEXCXXXZEEEDIALLYLPHTHALATEGEE <t< td=""><td></td><td></td><td></td><td></td><td>E</td><td></td><td>E</td><td></td><td></td><td></td><td></td><td></td><td></td><td>E</td></t<>					E		E							E
DI(2ETHYLHEXYL) ADIPATE E G X X X X I <td></td> <td></td> <td></td> <td></td> <td></td> <td>~</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>C</td> <td></td>						~							C	
DI(2ETHYLHEXYL) PHTHALATE G G X E X X E X E X E X E X E X E X E X E X E X E X E X E X E X E E E E E X X X X E X E<											~		F	
DIACETONE ALCOHOLEKKKXXKKEEDIACETYLMETHANEEGKKKXXXKK						F				F	X			
DIACETYLMETHANEEGEXXXXXEEDIALLYLPHTHALATEGGFEEE<	· · · · · · · · · · · · · · · · · · ·									L				F
DIALLYLPHTHALATEIIIIIIIIDIAMMONIUM PHOSPHATEEEEEEEEEEEEE			G			Ŭ						F		-
DIAMMONIUM PHOSPHATE E E E E E E E E E E E E E E E E		-		-	~		~	~	X		~	-	-	
		Е		Е	Е		Е	Е	Е		Е		Е	
	E = excellent; G = good; C = conditional; X = unsatisfactory									ataloa		Darkor f		colution

Chemical or Material Conveyed	Butyl	CPE	EPDM	CSM	трс-ет	Natural	Neoprene	Nitrile	Nylon	SBR	ТРV	PTFE	UHMWPE
				Ň	⊣		Re	_					5
	E			Х		Х		X		X		E	
DIAMYL PHENOL DIAMYLAMINE	X		Е	X C		X G		X G		X X		E	
DIAMYLENE	X		L.	X		X	Х	C	G	~		E	
DIBENZYL ETHER	G		С	X		X	X	X	u	Х		E	Е
DIBROMOBENZENE	X		-	Х		Х						E	G
DIBROMOMETHANE	Х		С	Х		Х	Х	Х			Х	E	
DIBUTYL ETHER	Х		Х	Х		Х	Х	Х		Х		Е	E
DIBUTYL PHTHALATE	С		Е	Х	G	Х	Х	Х	Е	Х		E	E
DIBUTYL SEBACATE	G		G	Х	G	Х	Х	Х		Х		E	E
DIBUTYLAMINE	Х		Х	Х		Х	Х	Х		Х		E	E
DICALCIUM PHOSPHATE	E			E		E		E				E	
DICHLORO DIFLUORO METHANE	Х	С	С	E	E	Х	G	С	G	E	Х	E	
DICHLORO ETHYLENE	С		Х	Х	Х	0	Х		С		Х	E	_
	С		0	Х		G	V	0		X		E	E
DICHLOROBUTANE	X	V	С	Х	V	Х	Х	G	0	Х	V	E	E
	C X	Х	Х	X	Х	X X	Х	X X	С	X X	Х	E	
DICHLOROETHYL ETHER	X			Х		X		X		X		E	-
DICHLOROFLUOROMETHANE DICHLOROHEXANE	Х			Х		Х						E	E
DICHLOROMETHANE	X		С	X	Х	X	G	Х	С	Х	Х	E	E
DICHLOROPENTANE	X		U	X	^	X	X	X	U	X	~	E	E
DICHLOROPROPANE	X			X		X	X	X		~		E	E
DICHLOROPROPENE	Λ			~		~	Λ	~				E	E
DICHLOROTOLUENE		Х										L	L
DIESEL OIL	Х	E	Х	С	G	Х	С	Е	Е	Х	Х	Е	E
DIETHANOLAMINE	E	-	E	C	X	G	Ŭ	-	G	X	~	E	E
DIETHYL ETHER	X		X	X	C	X	Х	Х	E	Х	Е	E	-
DIETHYL KETONE	G		E	Х		Х	Х					E	
DIETHYL OXALATE	Х		Х	Х		Х	Х	Х				Е	
DIETHYL PHTHALATE	E			Х		Х						E	E
DIETHYL SEBACATE	G		G	С	Е	Х	Х	Х		Х	E	E	
DIETHYL SULFATE	G		Е	Х		Х	Е	Х		Е		E	
DIETHYL TRIAMINE	E			С		G		G				E	
DIETHYLAMINE	G		G	С		G	G	С		G		E	E
DIETHYLBENZENE	Х		Х	Х		Х	Х	Х		Х		E	E
DIETHYLENE GLYCOL	E		Е	E	E	Е	Е	Е		Е		E	E
DIETHYLENE OXIDE	Х		E									E	
DIETHYLENE TRIAMINE	E		E	С		G	_	_		Х	E	E	E
DIHYDROXY DIETHYL ETHER	E		E	E		E	E	E				E	
DIHYDROXY SUCCINIC ACID	G		G	E		E	С	G				E	_
DIISOBUTYL KETONE	G		E	Х		Х	X	Х		Х		E	E
DIISOBUTYLENE DIISODECTYL PHTHALATE	X		X E	X X		X X	С	E		X X		E	E
DIISODECYL PHTHALATE	E		E	X		X	Х	Х		~		E	E
DIISOOCTYL ADIPATE	E			X		X	~	X		Х		E	Е
DIISOOCTYL PHTHALATE	E		G	X		X		~		~		E	E
DIISOPROPANOLAMINE	E		u	C		G		G				E	L
DIISOPROPYL ETHER	X		Х	C		X	Х	G		Х		E	
DIISOPROPYL KETONE	E		E	X		X	X	X		X		E	
DIMETHYL PHTHALATE	G		G	X	Е	X	X	X		X	G	E	E
DIMETHYL SULFATE	G			Х				Х				Е	E
DIMETHYL SULFIDE	C					Х		Х				E	
DIMETHYLAMINE	G		Х	Х			Х	Х				E	E
DIMETHYLANILINE	Х	С	G	Х			Х	Х		Х		E	G
DIMETHYLBENZENE	Х	С	Х	Х	Х		Х	Х	G	Х	Х	Х	Е
DIMETHYLBUTANE		G											
DIMETHYLCARBINOL	E		G	E		Е	Е	G				E	E
DIMETHYLFORMAMIDE			G										Е
DIMETHYLKETONE	E	G	Е	Х	С		Х	Х	Е	С	E	E	Е
DIOCTYL ADIPATE	E		G	Х		Х	Х	Х				E	E
DIOCTYL PHTHALATE	G		G	Х	E	Х	Х	Х	E	Х		E	E
DIOXALANES	Х		G	Х		Х	Х	Х		Х		E	E
DIOXANE	G		G	Х		Х	Х	Х	E	Х		E	E
DIPENTENE DIPENTYLAMINE	X		X E	X C		X G	Х	G G		X X		E	

Chemical or Material Conveyed	Butyl	CPE	EPDM	CSM	трс-ет	Natural	Neoprene	Nitrile	Nylon	SBR	ТРV	PTFE	UHMWPE
DI-P-MENTHA-1.8-DIENE	X		X	X	-	×	ž X	G		Х		E	5
DIPROPYLAMINE	E		~	C		G	~	G		~		E	
DIPROPYLENE GLYCOL	E			E		E		E				E	
DISODIUM PHOSPHATE	Е		E	Е		E		Е				E	E
DIVINYL BENZENE	Х			Х		Х				Х		E	E
DOWELL INHIBITOR		G											
DOWFAX 2A1 SOLVENT DOWFAX 2A1 TA		E											
DOWFAX 2AT TA DOWFAX 6A1 SOLVENT		G											
DOWFAX 6A1 TA		E											
"DOWTHERM, A AND E"	Х	Х	Х	Х	G	Х	Х	Х	Х	Х		С	Е
DRY CLEANING FLUIDS	Х		Х	Х			Х	С		Х		E	
DUCGKIRIOEBAANE	Х							_					
DURO AW16, 31			Х					E	E			E	
DURO FR-HD EHTYL BUTYL ACETATE	E		Х	G		Х		E X	E			E	Е
EHTYL BOTYL ACETATE EHTYL DICHLORIDE	C		С	X		X	Х	X		Х		E	E
EHTYLENE DIBROMIDE	X		C	X		X	X	X		X		E	G
EPICHLOROHYDRIN			C									_	B
ETHANOIC ACID	G	Е	E	С	С	Х	G	С	С	G	С	E	
ETHANOL (GRAIN ALCOHOL)	Е	G	E	Е	Е	E	Е	Е	Х	E	E	Е	Е
ETHANOLAMINE	G		G	Х		G	G	G		Х		E	E
ETHERS	X	G	С	Х	Х	Х	Х	Х	E	Х	_	E	_
ETHYL ACETATE ETHYL ACETOACETATE	G G	G	E G	X X	С	X C	X X	X X	E	X C	E	E	E
ETHYL ACETONE	G		G	X		X	X	X		X		E	E
ETHYL ACRYLATE	G		G	X		X	X	X		X		E	Е
ETHYL ALCOHOL	E	G	E	Е	Е	Е	Е	Е	Х	Е	Е	Е	Е
ETHYL ALDEHYDE	G		E	С		Х	Х	Х				Е	Е
ETHYL ALUMINUM DICHLORIDE	Х			Х		Х		Х				E	
ETHYL BENZENE	Х		Х	Х		Х	Х	Х		Х		E	E
	X E		Х	X E		C E	Х	G E		Х		E	F
ETHYL BUTANOL ETHYL BUTYL KETONE	G			X		X		X				E	E
ETHYL CELLULOSE	G		G	G	G	G	G	G	С	G		E	Е
ETHYL CHLORIDE	E	Х	E	С	Х	С	Х	E	E	G	Х	E	G
ETHYL DIISOBUTYLTHIO-CARBAMATE						E				E			Е
ETHYL ETHER	Х	G	Х	Х		Х	Х	Х	E	Х		E	E
ETHYL FORMATE	G		G	G		Х	G	Х		Х		E	E
ETHYL IODIDE ETHYL OXALATE	C X		C C	X X		X C	X X	X X		х		E	G E
ETHYL PHTHALATE	Ē		U	X		X	~	X		~		E	E
ETHYL SILICATE	E		Е	G		G	Е	E		G		E	E
ETHYLAMINE	G		E	С		С	Х	Х		С		E	E
ETHYLENE													Е
ETHYLENE BROMIDE			С										В
ETHYLENE CHLORIDE	0		-	-		-	-					_	G
	G E		G E	C G		C	G E	X		0		E	E
ETHYLENE DIAMINE ETHYLENE DIBROMIDE	E			G		G		G		G		E	E B
ETHYLENE DICHLORIDE	С	Х	Х	С	Х	Х	Х	Х	С	Х	Х	Е	G
ETHYLENE G MONOETHYL E ACETATE	E		E	X		С	Х	С	Ű			E	0.
ETHYLENE G. MONOBUTYL ETHER	E		E	С		Х	С	С		Х		E	
ETHYLENE G. MONOHEXYL ETHER													
ETHYLENE G. MONOMETHYL ETHER	E		G	G	_	Х	E	С	_		_	E	_
	E	G	E	E	E	E	E	E	E	E	E	E	E
ETHYLENE OXIDE FATTY ACIDS	X X	Х	C X	X C	E G	X X	X G	X	G E	X X	Х	E	E
FERRIC BROMIDE	E		^	E	G	Ē	G	E	E	^	^	E	E
FERRIC CHLORIDE	E	Х	E	E	G	E	E	E	С	E		E	E
FERRIC NITRATE	E		E	E		E	E	E	E	E		E	E
FERRIC SULFATE	Е	Х	E	Е	E	E	Е	Е	E	E		Е	Е
FERROUS ACETATE	E			Е		Х		Х				Е	
FERROUS CHLORIDE	G		E	G	E	E	G	E	E	-		E	E
	E		E	E	E	E	E	E	E	E	0	E	E
FLOUROSILIC ACID	E		E	E		E	E	E		G	С	E	С

E = excellent; G = good; C = conditional; X = unsatisfactory

Parker

* compounds not in catalogue. Ask Parker for right solution

Technical Handbook

Technical Handbook

Chemical or Material	7		Σ	5	ET	ral	ene	e	Ę	~		ш	VPE
Conveyed	Butyl	CPE	EPDM	CSM	ТРС-ЕТ	Natural	Neoprene	Nitrile	Nylon	SBR	ТРV	PTFE	UHMWPE
FLUOBORIC ACID	G		E	E		E	E	E		Е		E	С
FLUORINE	X		E	X	Х	X	X	X	Х	_		G	X
FORMALDEHYDE	E	G	E	G	С		G	С	E	С	E	E	E
FORMALIN	E	G	E	G	С		G	С	E	С	E	E	
FORMIC ACID	E	Х	E	E	С	С	E	С	Х	E	E	E	E
FREON 113	Х	-	Х	E	E	Х	E	E	Х	G	Х	E	
FREON 12 FREON 22	C X	C C	C E	E E	E X	C C	E	E X	G G	E	X X	E	
FREON 502	E	C	E	E	~	E	E	G	E	E	~	E	
FUEL A (ASTM)	X	E	X	G	E	X	G	E	E	X	Х	E	G
FUEL B (ASTM)	X	G	X	X	E	X	X	X	E	X	X	E	G
FUEL C (ASTM)			Х		_		С		_				G
FUEL OIL	Х	E	Х	С	G	Х	G	Е	G	Х		Е	E
FURALDEHYDE	E	E	G	С	G	Х	С	Х	С	Х	E	E	
FURAN	Х		Х	Х		Х	Х	Х		Х		E	
FURFURAL	E	E	G	С	G	Х	С	Х	С	Х	E	E	E
FURFURAN	Х		Х	Х	-	Х	Х	Х	-	Х	_	E	_
FURFURYL ALCOHOL GALLIC ACID	G		G	Х	G	Х	X	Х	G	Х	E	E	E
GALLOTANNIC ACID	G G		G E	G E	Х	E	G E	G E	G	G		E	E
GAS, 100 OCTANE	X		X	X	Е	X	C	E	G	Х	Х	E	С
GAS, COAL	~		E	~	G	~	E	X	E	~	~	-	Ŭ
GASOLINE	Х	Е	X	Х	E	Х	X	E	G	Х		Е	G
GLACIAL ACRYLIC ACID													
GLUCONIC ACID	С			G		Х		С				E	E
GLUCOSE	E		E	E	G	E	G	Е	G	E		E	E
GLYCERINE	E	E	E	E	E	E	E	Е	G	E	Х	E	А
GLYCEROL	E	E	E	E	E	E	E	E	G	E	Х	E	
GLYCOGENIC ACID	С		_	G	-	X	_	С	-	_	-	E	_
GLYCOLS	E		E	E	С	E	E	E	G	E	G	E	E
GLYCONIC ACID GLYCYL ALCOHOL	C E	E	E	G E	E	X E	E	C E	G	E	Х	E	E
GREASE, PETROLEUM BASE	X	E	X	X	E	X	C	E	E	X	X	E	Е
GREEN SULFATE LIQUOR	E		E	G	X	G	G	G	X	G	~	E	E
HALON 1211	_		_	0,		0,	E	E		0,		_	_
HELIUM	Е		Е	Е		Е	Е	Е	Е	Е		Е	
HEPTALDEHYDE	Х			Х		Х		Е				E	
HEPTANAL	Х			Х		Х		E				E	E
HEPTANE	Х	E	Х	G	G	Х	G	E	E	Х		E	E
	С	_		G		Х		С				E	
HEPTANOIC ACID HEPTANONE		E C											
HEFTANONE HEXADECANOIC ACID	G	G	G	С	Е	Е	G	Е	С	В	Е	Е	
HEXALDEHYDE	G	G	E	C	L	X	E	X	Ŭ	X	L	E	Е
HEXANE	Х		X	E	Е	Х	E	E	Е	Х	Е	E	G
HEXANOL	С		G	G		E	G	Е		Е		E	Е
HEXENE	Х		Х	G		Х	G	G		Х		E	
HEXYL ALCOHOL	С		G	G		E	G	G		E		E	E
HEXYL METHYL KETONE	G			Х		Х		Х				E	
	G		0	С		С	-	С				E	
HEXYLENE GLYCOL HISTOWAX	E	E	С	E		E	E	E				E	
HISTOWAX HYDRAULIC OIL, PETROLEUM		E	Х	G	Е	Х	G	E	Е		Х	Е	Е
HYDRAULIC FLUID (PHOSPHATE ESTER BASE)		L	Ē	u	L	~	X	L	L		~		X
HYDRAULIC FLUID (POLYALKYLENE GLICOL BASE)			C				G						Ē
HYDRAZINE	E		E	G	Х	Х	G	G	Х	G		E	
HYDROBROMIC ACID	E	Х	E	E		E	Х	Х	Х	Х		E	G
HYDROCHLORIC ACID	E	Х	С	С	С	С	С	С	С	Х	E	E	Е
HYDROCYANIC ACID	G	Х	E	E	Х	G	G	G	Х	G	E	E	Е
HYDROFLUORIC ACID	G	Х	С	E	X	С	С	С	Х	С	Х	E	E
	E	Х	E	E	G	E	G	G	Х	G		E	G
HYDROGEN CHLORIDE ANHYDROUS	0	E	0	0		0	V	0				F	
HYDROGEN DIOXIDE (10 %) HYDROGEN GAS	C E	С	G	G	E	G G	X	C E	E	G		E	E
HYDROGEN GAS HYDROGEN PEROXIDE 10 %	G	0	G	E	X	G	X	C	G	C		E	G
HYDROGEN PEROXIDE OVER 10 %	X	Х	C	G	X	X	X	X	X	X		E	E
E = excellent; G = good; C = conditional; X = unsatisfactory											Darkor f		solution

Chemical Resistance Table

Technical Handbook

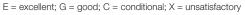
Chemical or Material	Butyl	CPE	EPDM	CSM	трс-ет	Natural	Neoprene	Nitrile	Nylon	SBR	ТРV	PTFE	UHMWPE
Conveyed	B	0	Ü	о О	TP	Na	Neo	ÏŻ	ź	S		ے م	H
HYDROGEN SULFIDE (WET)	E	Х	E	E	Е	Х	E	С	Х	Х		E	Е
	G	F	С	С		Х	Х	Х				E	
HYDROXYISOBUTYRONITRILE HYDROXYTOLUENE		E											
HYVAR XL		E	Е										
IMINODI-2-PROPANOL		Е	-										
IMINODIETHANOL		E											
IODINE	G		G	G		Х	Х	G	E	G		Е	G
IODINE PENTAFLUORIDE	Х		Х	Х		Х	Х	Х		Х		E	С
IODOFORM			Х			Х	Х	E		Х			
ISOBUTANAL		G											
ISOBUTANE							Х						E
ISOBUTANOL (ISOBUTYL ALCOHOL)			E				E						E
	-		С	0		0		V				- F	В
ISOBUTYLAMINE ISOBUTYLBROMIDE	E X			C X		C X		X X				E	
ISOBUTYLCARBINOL	Ē		Е	Ē		Ē	Е	Ē				E	
ISOBUTYLENE			-	-		-	-	-				-	Е
ISOCYANATES					G			G	G				E
ISOOCTANE	Х	Е	Х	G	E	Х	G	E	E	Х	Х	Е	E
ISOPROPANOL			E				E						E
ISOPROPYL ACETATE	G		G	Х	С	Х	Х	Х	G	Х		E	E
ISOPROPYL ALCOHOL	E		E	E	E	E	G	E	E	E		E	E
ISOPROPYL ETHER	Х		Х	С		Х	Х	G		Х		E	E
JET FUELS	Х		Х	Х	_	Х	Х	E	С	Х	Х	E	E
	X	0	Х	X	E	X	X C	E	C E	X X	X X	E	Е
KEROSENE KETONES	X G	G G	X	X C	X	X C	X	X	E	G	X	E	E
LACQUER SOLVENTS	X	C	X	X	C	X	X	X	E	X	~	E	G
LACTIC ACID - COLD	E	X	E	E	X	E	E	E	E	E		E	E
LACTIC ACID – HOT	-	~	X	C	C	X	X	X	X	X		E	-
LARD	С		G	G	G	Х	G	Е	Е	Х	Е	Е	G
LAVENDER OIL	Х		Х	Х		Х	Х	G		Х		E	G
LEAD ACETATE	E		E	С		E	G	G		Х		E	E
LEAD NITRATE	E		E	С		E	E	E		E		E	
LEAD SULFATE	E		E	E	G	E	G	E	G			E	E
	E		E	E	G	E	E	E	G	_		E	
	E		E C	G G		E C	G E	E		E		E	Е
LIME SULFUR, WET	X		X	X		X	X	X				E	
LINOLEIC ACID	X		X	X		X	C	G		Х		E	
LINSEED OIL	G	G	C	G	G	X	E	E	Е	X		E	Е
LIQUID PETROLEUM GAS				-			С		_			_	E
LIQUID SOAP			E				Е						В
LUBRICATING OILS, SAE	Х	G	Х	Х	E	Х	С	E	E	Х	Х	E	E
LYE SOLUTIONS	E	С	E	E	С	E	Е	С	G	G	С	E	
MEX	G	С	E	Х	С	Х	Х	Х	E	Х	Х	E	E
MAGNESIUM ACETATE	E		E	E		Х	Х	Х		Х		E	
	-	~	E	-	~	-	E	-	-	-		E	G
MAGNESIUM CHLORIDE MAGNESIUM HYDRATE	E	G	E	E	G	E	E	E	E	E		E	E
MAGNESIUM HYDRAIE MAGNESIUM HYDROXIDE	E	G	E	E	С	E	G E	G E	E	G		E	E
MAGNESIUM HYDROXIDE MAGNESIUM SULFATE	E	G	E	E	G	G	E	E	E	G		E	E
MAGNESIUM SULFITE	E	u	E	E	u	G	E	E		G		L.	
MALEIC ACID	X		E	X		X	X	C		X		E	E
MALEIC ANHYDRIDE	Х		Х	Х		Х	Х	Х		Х		E	
MALIC ACID	Х		Х	G		E	G	E	E	G		E	Е
MANGANESE SULFATE	G		E	E		G	E	E				E	E
MAPP			G				Е	E		G			
MERCURY	E	G	E	E	E	E	E	E	E	E		E	E
MERCURY VAPORS	E		E	E		С	С	E		E		E	-
	С		G	Х		Х	Х	Х		Х		E	E
	E	C		E		E		E				E	
METHALLYL CHLORIDE		С	Х				G						Е
METHANE							U U					1	L C
METHANE METHANE CARBOXYLIC ACID							12	EE ACE		D			

International and the set of the	Chemical or Material Conveyed	Butyl	CPE	EPDM	CSM	трс-ет	Natural	Neoprene	Nitrile	Nylon	SBR	ТРV	PTFE	UHMWPE
Methadox	METHANOIC ACID	E	Х	E	E		С		С	Х	E	E	E	
METHONYETHANOL FE ICH ONYETHANOL FE	METHANOL (METHYL ALCOHOL)		G			E						E		Е
MCTHONOTHONOTHONONFFICFICFICFIC <td>METHANOL (WOOD ALCOHOL)</td> <td>E</td> <td>G</td> <td>E</td> <td>E</td> <td>E</td> <td>E</td> <td>E</td> <td>Е</td> <td>G</td> <td>E</td> <td>E</td> <td>E</td> <td>E</td>	METHANOL (WOOD ALCOHOL)	E	G	E	E	E	E	E	Е	G	E	E	E	E
METHYL ACTIONEGGG														
MEIPHACCIMACEMEIPMEDGCCVVV </td <td></td>														
METHYA ACCIDACIANCEGKK		0	E	0	0	0	N/	0	N/	-	N		_	-
METHMALGENDINEMETHMALGENDINEGKK </td <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>C</td> <td></td> <td></td> <td></td> <td>E</td> <td>X</td> <td></td> <td></td> <td>E</td>					-	C				E	X			E
METHYA ACEYMENEMETHYA ACEYME														F
METHYA ACRIVATE METHYA ACRIVATE STABS.VI <t< td=""><td></td><td>u</td><td></td><td></td><td>~</td><td></td><td>U</td><td></td><td></td><td></td><td>G</td><td></td><td>L</td><td>L</td></t<>		u			~		U				G		L	L
METHYALACPYATE STAB.II								-	-		G			В
METHYA LALYA LACOHOLOEVEVEVEVEVEVEVEVVV <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>														
METHYLAUMLCHUCRIDEFCCXX<	METHYL ALCOHOL	E	G	E	E	E	Е	Е	Е	G	E	E	Е	Е
MEIHVL GARPINOLEIIEIEIII <td>METHYL ALLYL ALCOHOL</td> <td>E</td> <td></td> <td></td> <td>E</td> <td></td> <td>E</td> <td></td> <td>E</td> <td></td> <td></td> <td></td> <td>E</td> <td></td>	METHYL ALLYL ALCOHOL	E			E		E		E				E	
MEITAL BENZENEXXX			С								Х			
MethyleCNNN </td <td></td> <td>_</td> <td></td>		_												
MEITHALBUTANEXXX<			С											
METHYALBUTANOLEEE		_				Х	Х			G	Х	Х		G
MEITHYL BUTYL METONEEKKK			Г			Г	Г			Г	0	Г		
METHYL CARBITOLEKK <td></td> <td></td> <td>E</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>E</td> <td></td> <td>E</td>			E									E		E
MEITHYL CELLOSOLVEGGGGKKK<				E				~			~			E
METHYL CHLORIDE X <td></td> <td>_</td> <td></td> <td>G</td> <td></td> <td></td> <td></td> <td>G</td> <td></td> <td></td> <td>Х</td> <td></td> <td></td> <td>F</td>		_		G				G			Х			F
NEI-MACNEICCC			С			Х				С		Х		
NETHYL HEXANOLEIIEIEIEIEIII			0							Ū				_
METHYL ISOAUNYL KETONE (MIBK) C <thc< td=""><td>METHYL ETHYL KETONE</td><td>E</td><td>G</td><td>Е</td><td>Х</td><td>Е</td><td>Х</td><td>Х</td><td>Х</td><td>G</td><td>Х</td><td>С</td><td>Е</td><td>Е</td></thc<>	METHYL ETHYL KETONE	E	G	Е	Х	Е	Х	Х	Х	G	Х	С	Е	Е
METHYL ISOBUTYL KETONE (MIBK)CC	METHYL HEXANOL	E			E		E		Е				E	E
METHYL METHACE/NUME C X	METHYL ISOAMYL KETONE		С											
METHYL NORMAL AMYL KETONE G X														
METHYL PROPYL ETHERXXX<				Х				Х		С	Х	С		G
METHYL SALLCYLATEGGG <td></td>														
METHYL STYRENE METHYL SULFIDEIII <t< td=""><td></td><td>_</td><td></td><td>0</td><td>G</td><td></td><td></td><td>V</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		_		0	G			V						
METHYL SULFIDECCC<		G	0	C			X	X	X				E	
METHYL TERTIARY BUTYL ETHERGXXX <td></td> <td>C</td> <td>U</td> <td></td> <td>X</td> <td></td> <td>X</td> <td></td> <td>X</td> <td></td> <td></td> <td></td> <td>F</td> <td></td>		C	U		X		X		X				F	
METHYL-1-PROPANOL METHYL-2-BUTANOLEEE </td <td></td> <td></td> <td>X</td> <td></td> <td>~</td> <td></td> <td>~</td> <td>Х</td> <td></td> <td></td> <td>Х</td> <td></td> <td></td> <td>G</td>			X		~		~	Х			Х			G
METHYL-2-BUTANONEGXX <td></td> <td>_</td> <td></td> <td>Е</td> <td>Е</td> <td></td> <td>Е</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>C,</td>		_		Е	Е		Е							C,
METHYL-2-HEXANONEGGCVV <td></td> <td></td> <td>Е</td> <td></td>			Е											
METHYL-2-PENTANOLEEEEEGEGIIEEIII <td>METHYL-2-BUTANONE</td> <td>G</td> <td>Х</td> <td>С</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>Х</td> <td>E</td> <td>Х</td> <td></td> <td>Е</td> <td></td>	METHYL-2-BUTANONE	G	Х	С	Х	Х	Х	Х	Х	E	Х		Е	
METHYL-2-PENTANONECXKKXXXXKXX </td <td>METHYL-2-HEXANONE</td> <td>G</td> <td>С</td> <td></td> <td>Х</td> <td></td> <td>Х</td> <td></td> <td></td> <td></td> <td>Х</td> <td></td> <td></td> <td></td>	METHYL-2-HEXANONE	G	С		Х		Х				Х			
METHYL-2-PROPEN-1-OLIC <th< td=""><td>METHYL-2-PENTANOL</td><td>E</td><td></td><td>E</td><td>E</td><td></td><td>G</td><td>Е</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	METHYL-2-PENTANOL	E		E	E		G	Е						
METHYL-3-PENTEN-1-ONEII		_	Х			Х				G	Х	Х		
METHYL-4-ISOPROPYL BENZENEImage: Sector of the		E		E	E		G	E	G				E	
METHYLALLYLACETATEEIIGIXIIIIEMETHYLAMYLALCOHOLEFEEEGGFGIII <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>														
METHYLAMYLALCOHOLIII <td></td> <td>E</td> <td>C</td> <td></td> <td>G</td> <td></td> <td>V</td> <td></td> <td>\vee</td> <td></td> <td></td> <td></td> <td>E</td> <td></td>		E	C		G		V		\vee				E	
METHYLCYCLOHEXANEXXX <td></td> <td></td> <td></td> <td>F</td> <td></td> <td></td> <td></td> <td>F</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				F				F						
METHYLENE BROMIDEIX				L.				L.						
METHYLENE CHLORIDEXXX </td <td></td> <td>_</td> <td></td> <td>Х</td> <td></td> <td></td> <td></td> <td>Х</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>G</td>		_		Х				Х						G
METHYLETHYLKETONEIEGEGEXEXXXGXCEEMETHYLHEXYLKETONEGGXX <t< td=""><td></td><td></td><td></td><td></td><td></td><td>Х</td><td></td><td></td><td></td><td>С</td><td>Х</td><td>Х</td><td></td><td></td></t<>						Х				С	Х	Х		
METHYLISOBUTYL CARBINOLEEEEEGEGIIIIIMETHYLISOBUTYL KETONECXKKXXX <td< td=""><td>METHYLETHYL KETONE</td><td>_</td><td>G</td><td>E</td><td>Х</td><td>Е</td><td>Х</td><td>Х</td><td>Х</td><td>G</td><td>Х</td><td>С</td><td>Е</td><td>E</td></td<>	METHYLETHYL KETONE	_	G	E	Х	Е	Х	Х	Х	G	Х	С	Е	E
METHYLISOBUTYL KETONECXXGXXGXXEXEEMETHYLISOPROPYL KETONEGXX	METHYLHEXYL KETONE	G			Х		Х		Х				Е	
METHYLISOPROPYL KETONEGXXXXXEXEEMETHYLLACTONITRILEEFKCCBXFEEFMETHYLPHENOLXXKCCBXXFEEFMETHYLPROPYL CARBINOLEKKFF <td>METHYLISOBUTYL CARBINOL</td> <td></td> <td></td> <td>E</td> <td>E</td> <td></td> <td>G</td> <td>E</td> <td>G</td> <td></td> <td></td> <td></td> <td></td> <td></td>	METHYLISOBUTYL CARBINOL			E	E		G	E	G					
METHYLLACTONITRILEEEECCBXIEEEMETHYLPHENOLXXXCXXXXXEEEMETHYLPROPYLCARBINOLEEKKEEE <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Х</td> <td></td> <td>E</td>		_										Х		E
METHYLPHENOLXXX <th< td=""><td></td><td></td><td>Х</td><td>С</td><td></td><td>Х</td><td></td><td></td><td></td><td>E</td><td>Х</td><td></td><td></td><td></td></th<>			Х	С		Х				E	Х			
METHYLPROPYL CARBINOLEE												E		
METHYLPROPYL KETONE G G X X X X X X X E E MIL-A-6091 E E F E <				Х				Х						
MIL-A-6091 E E E E E E E E G E E E MIL-E-9500 E				G				V			V			
MIL-E-9500 E													C	
MIL-F-16884 X X X C X C E X X I MIL-F-17111 X X X X X X G E X X I MIL-F-25558B X X G X G X G X X I I I MIL-F-25576C X X X X C X C X Z X I I I														
MIL-F-17111 X X X X X G E X X I MIL-F-25558B X X X G X G Z X G X X G X X I </td <td></td>														
MIL-F-25558B X X G X G E X G Z <thz< th=""> Z <thz< th=""> <thz< th=""> <thz<< td=""><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thz<<></thz<></thz<></thz<>		_												
MIL-F-25576C X X X X X X X X X X X X X X X X X X X														
MIL-F-7024A X X X X E X	MIL-F-25576C	Х		Х	С		Х	С						
	MIL-F-7024A	Х		Х	Х		Х	Х	E		Х			

Technical Handbook

Chemical Resistance Table

Chemical or Material	Butyl	CPE	EPDM	CSM	трс-ет	Natural	Neoprene	Nitrile	Nylon	SBR	ТРV	PTFE	UHMWPE
Conveyed	Bu	S	EPI	SS	ТРС	Nati	Neop	Nit	NyI	SE	Ë	РТ	NHN
MIL-G-10924B	Х		Х	G		Х	Х	E		Х			
MIL-G-25013D	Х		Х	G		Х	G	Е		Х			
MIL-G-25537A	Х		Х	G		Х	G	Е		Х			
MIL-G-4343B	С		С	G		С	G	G		С			
MIL-G-5572	Х		Х	Х		Х	Х	Е		Х			
MIL-G-7711A	Х		Х	Х		Х	Х	Е		Х			
MIL-H-13910B	G		E	G		G	G	G		E			
MIL-H-19457B	E		E	Х		Х	Х	Х		Х			
MIL-H-22251	E		E	G			G	G		G			
MIL-H-27601A	Х		Х	С		Х	G	G		Х			
MIL-H-5606B	Х		С	G		Х	G	E		Х			
MIL-H-6083C	X		Х	G		С	G	E		Х			
MIL-H-8446B	Х		Х	С		Х	G	G		Х			
MIL-J-5161F	Х		X	Х		Х	Х	G		Х			
MIL-J-5624G (JP-3, JP-4, JP-5)	X		X X	X G		X	X G	E		X X			
MIL-L-15016						X				X X			
MIL-L-17331D MIL-L-2104B	X		X X	G C		X X	G G	E		X			
MIL-L-2104B MIL-L-21260	X		X	G		X	G	E		X			
MIL-L-21260 MIL-L-23699A	X		X	C		X	C	G		X			
MIL-L-25699A MIL-L-25681C	Ē		Ē	G		G	G	G		G			
MIL-L-250610 MIL-L-3150A	X		X	G		X	G	E		X			
MIL-L-3545B	X		X	C		C	G	G		X			
MIL-L-4339C	X		X	X		X	X	E		X			
MIL-L-6082C	X		X	G		X	G	E		X			
MIL-L-6085A	X		X	X		X	X	G		X			
MIL-L-7870A	X		X	X		X	G	E		X			
MIL-L-9000F	X		X	С		Х	G	E		Х			
MIL-L-9236B	X		X	X		X	X	G		X			
MIL-0-5606							~	E		~~~			
MIL-0-7808	Х		Х	Х		Х	Х	G		Х		Е	
MIL-P-27402	E		E	G			G	G		G			
MIL-S-3136B TYPE 1 FUEL	X		X	G		Х	G	E		Х			
MIL-S-3136B TYPE 2 FUEL	Х		Х	Х		Х	Х	С		Х			
MIL-S-3136B TYPE 3 FUEL	Х		Х	Х		Х	Х	С		Х			
MIL-S-3136B TYPE 4 OIL, LOWSWELL	Х		Х	Е		Х	Е	Е		Х			
MIL-S-3136B TYPE 5 OIL, MEDSWELL	Х		Х	G		Х	G	Е		Х			
MIL-S-3136B TYPE 6 OIL, HI SWELL	Х		Х	Х		Х	Х	Е		Х			
MIL-S-81087	E		E	E		E	Е	Е		Е			
MINERAL OIL	Х	G	Х	E	E	Х	Е	Е	Е	Х	Х	E	E
MINERAL SPIRITS	Х		Х	G		Х	Х	Е		Х		Е	E
MOBILE HFA			Х					Е	Е			E	
MOLTEN SULFUR	G		E	E		G	Е	G				Е	Х
MONOBUTYL ETHER	Х		Х	Х		Х	С	С		Х		E	
MONO-CHLOROACETIC ACID	G	Х	С	Х	Х	С	E	Х	Х	Х	Х	E	
MONOCHLOROBENZENE	Х		Х	Х	С	Х	Х	Х	G	Х	Х	E	G
MONOCHLORODIFLUOROMETHANE	Х	С	E	E	Х	С	E	Х		E	Х	E	
MONOETHANOL AMINE	G		G	С		G	G	G		G		E	E
MONOETHYL AMINE	G		E	С		С	Х	Х		С		E	
MONOMETHYLAMINE	С		E	С		С	С	G				E	
MONOVINYL ACETATE			G										В
MORPHOLINE			Х				Х	Х	Х			E	
MOTOR OIL			Х	G	G		G	Е	G			E	E
MTBE	G	Х					Х	Х		Х		G	G
MURIATIC ACID	С	Х	С	С	С	С	С	С	Х	Х	E	E	E
NA-K			Х					Х				Х	
NAPHTHA	Х	E	Х	Х	E	Х	Х	E	E	G	Х	E	E
NAPHTHALENE	Х	С	Х	Х	С	Х	Х	Х	G	Х	С	E	E
NAPTHENIC ACIDS		E	Х	Х		Х	Х	G		Х		E	
N-BUTANAL	G		G	С		Х	С	Х				E	
N-BUTYLAMINE	Х		С	Х		Х	Х	Х		Х		E	
N-BUTYLBENZENE				Х		Х		Х				E	
N-BUTYLBROMIDE	Х			Х		Х		Х				E	
N-BUTYLBUTYRATE	E		E	Х		Х	Х	Х	_	Х		E	
N-BUTYLCARBINOL	E	E	E	E	E	E	E	G	Е	E	E	E	
NEOHEXANE	Х			Х		Х		E				E	


Chemical or Material Conveyed	Butyl	CPE	EPDM	CSM	трс-ет	Natural	Neoprene	Nitrile	Nylon	SBR	ТРV	PTFE	UHMWPE
NEON GAS	E		E	E		E	Z	E	E	E	E	E	2
NEU-TRI	X		_	X		X	-	X	_	_	_	E	
NICKEL ACETATE	E		E	Х		Е	G	G		Х		E	Е
NICKEL CHLORIDE	E	Х	E	E	С	E	G	Е	С	E		E	Е
NICKEL NITRATE	E		E	E		E	Е	Е				E	E
NICKEL SULFATE	E	Х	E	E	С	G	E	E	С	G		E	E
NIETYLENE	_		_	-	-	E	0		-		_	_	_
NITRIC ACID, 10 %	E	Х	E	G	С	Х	G	Х	С	Х	E	E	E
NITRIC ACID, 13N NITRIC ACID, 13N + 5 %	X	X	X X	X X	X X	X X	X X	X X	X X	X X		E	
NITRIC ACID, UP TO 25 %	G	X	Ē	G	X	X	X	X	X	X		E	Е
NITRIC ACID, 25 % – 40 %	C	X	G	C	X	X	X	X	X	X		E	G
NITRIC ACID, 40 % – 60 %	X	X	X	X	X	X	X	X	X	X		E	C
NITRIC ACID, CONC (16N)	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	E	Ē
NITRIC ACID, RED FUMING	С	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	E	Х
NITRILOTRIETHANOL	G		E	Е	Х	G	Х	С		G		Е	
NITROBENZENE	G	С	Х	Х	Х	Х	Х	Х	С	Х		Е	Е
NITROETHANE	G		G	С		G	С	Х		G	E	E	E
NITROGEN	E		E	E		E	Е	Е		E		E	E
NITROMETHANE	G		G	С	С	G	Х	Х		С		E	E
NITROPROPANE	_		G	_		_		_				_	E
NITROUS OXIDE GAS	E		E	E		E	G	E	С			E	E
	E		X	E		E	0	E		X		E	0
	Х		Х	X		X	С	E		Х		E	G
NONANOIC ACID NONANOL	E			X		X E		E				E	
N-SERV (75 % XYLENE)	E			E		E			Е			E	
NUTO H			Х					Е	E			E	
NYVAC LIGHT			E					X	E			E	
O-AMINOTOLUENE		G	-					~	-				
OCTANOIC ACID	С			G		С		С				Е	
OCTANOL	G		Е	G		G	G	G		G		Е	Е
OCTYL ACETATE	E			Е		Х		Х				E	E
OCTYL ALCOHOL	G		G	G		G	G	G		G		Е	E
OCTYL ALDEHYDE	С			Х		Х		Х				E	
OCTYL AMINE	E			С		С		С				E	
OCTYL CARBINOL	E			E		E		E				E	
OCTYLENE GLYCOL	E			E	_	E		E				E	
OIL-PETROLEUM	Х	G	X	G	E	Х	G	E	G	Х	С	E	E
	X	X	C	G	E	X	C	E	E	X		E	E
OLEUM (FUMING SULFURIC ACID)	X G	Х	X G	X G	Х	X X	X G	X	X	X X		E	X G
ORTHO-DICHLOROBENZENE	X		X	X	Х	X	X	X	E	X	Х	E	G
ORTHO-DICHLOROBENZELLE	X		X	X	X	X	X	X	E	X	X	E	
ORTHOXYLENE	X	С	C	X	C	X	X	X	G	X	X	E	
OXALIC ACID	E	X	E	E	X	C	G	G	G	G	E	E	Е
OXYDIETHANOL		E											
OXYGEN COLD			E				Е						E
OZONE	G		E	Е	С	Х	С	Х	С	Х		Е	С
PAINT THINNER	Х		Х	Х		Х	Х	Х	G	Х		E	E
PALM OIL													E
PALMITIC ACID	G	G	G	С	E	E	G	E	С	В	E	E	E
PAPERMAKERS ALUM	E			E		E	E	E				E	G
PARA METHOXYPROPENYL BENZENE	Х	Х	X	Х		Х	Ň	N/	G	X		E	
PARA-DICHLOROBENZENE	X		X	X		X	X	Х		Х		E	-
	X		X	X		X	G	E		E		F	E
PARALDEHYDE PARAXYLENE	E X		E X	X X		C X	C X	C C				E	
PCB	~		~	~		~	~	U				E	
P-CYMENE	Х	Х	Х	Х		Х	Х	Х		Х		E	Е
PELARGONIC ALCOHOL	E	A	~	E		E	Λ	Ē		Λ		E	-
PENTACHLOROETHANE	X			X		X	Х	X				E	
PENTADIONE		G											
PENTAMETHYLENE	Х		Х	Х		Х	Е	G				Е	
PENTANE	Х		Х	С	G	Х	С	E	G	Х		E	G
PENTANOL	E		E	E		E	Е	Е				Е	
			-	-		-				-		-	-

Technical Handbook

Chemical Resistance Table

Chemical or Material Conveyed	Butyl	CPE	EPDM	CSM	трс-ет	Natural	Neoprene	Nitrile	Nylon	SBR	тру	PTFE	UHMWPE
			Ē	0	ТР	Na	Ned	Z	z	0)		4	H
PENTANONE	G		G	Х		Х	Х	Х				Е	
PENTASOL	E		E	Е		E	Е	G		G		Е	
PENTYL ACETATE	G		E	Х	С	Х	Х	Х	G	Х	Х	Е	
PENTYL ALCOHOL	E	E	E	E	E	E	E	G	Е	E	E	Е	
PENTYL BROMIDE												Е	
PENTYL CHLORIDE	Х	С	Х	Х		Х	Х		E	Х		Е	
PENTYL ETHER				С				С				Е	
PENTYLAMINE	G		Х	С		С	Х	С				Е	
PERCHLORIC ACID-2N	G		G	G	Х	Х	G	Х	Х	Х	Х	E	
PERCHLOROETHYLENE	Х	С	Х	Х	Х	Х	Х	С	С	Х	Х	E	G
PERCHLOROMETHANE	Х					Х	Х	Х				E	
PETROLEUM CRUDE	Х		Х	G	С	Х	G	E	G	Х		E	E
PETROLEUM ETHER	Х		Х	Х		Х	С	E	Е	Х		E	
PETROLEUM OILS	Х	G	Х	G	E	Х	G	E	G	Х	С	E	E
PHENBO													E
PHENOL	G			Х	Х	Х	Х	Х	Х	Х	Х	E	E
PHENOLSULFONIC ACID	С			Х		Х		Х				E	G
PHENYLAMINE	E		G	Х		Х	Х	Х				E	
PHENYLBROMIDE	Х		Х	Х		Х	Х	Х				E	
PHENYLBUTANE		С											
PHENYLCHLORIDE	Х		Х	Х		Х	Х	Х				E	
PHENYLETHYLENE	Х		Х	Х	Х	Х	Х	Х		Х		E	
PHENYLMETHANE	Х		Х	Х		Х	Х	Х				E	
PHENYLMETHANOL	G		G	G	С	Х	Х	Х	С	Х	Х	E	E
PHENYLMETHYL ACETATE	E			G		Х						E	E
PHOSPAHTE ESTERS	E	G	E	Х	С	Х	Х	Х	E	Х	E	E	
PHOSPHORIC ACID 10 %	G	Х	E	E			E	E	E	G	E	E	E
PHOSPHORIC ACID 10 % - 85 %	G	Х	E	E	Х	G	E	Х	С	G		E	E
PHOSPHORUS TRICHLORIDE ACID	E		E	Х		Х	Х	Х		Х		E	
PHTALIC ANHYDRIDE			E				E						
PICRIC ACID, H2O SOLUTION	С	Х	С	E	Х	С	С	С	Х	G	Х	С	
PINE OIL	Х		Х	Х		Х	Х	G		Х		E	E
PINENE	Х		Х	Х		Х	Х	G		Х		E	E
POLY CHLORINATED BIPHENOL												E	
POLYETHYLENE GLYCOL E-400	E	E		E		E				E			E
POLYOL ESTER					Х		G		G				
POLYPROPYLENE GLYCOL	E			E		E		E				E	
POLYVINYL ACETATE EMULSION (PVA)			E				G						В
POTASSIUM ACETATE	E		E	С		E	G	G	G	Х		E	E
POTASSIUM BICARBONATE			E				E						E
POTASSIUM BISULFATE	E		E	E		E	E	E	G	G		E	E
POTASSIUM BISULFITE	E		E	E		E	E	E	G	G		E	E
POTASSIUM CARBONATE	E	-	E	E	Х	E	E	E	С	E		E	E
POTASSIUM CHLORIDE	E	G	E	E	G	E	E	E	E	E		E	E
	G	-	E	С	-	G	E	E	G	G		E	G
POTASSIUM CYANIDE	E	G	E	E	G	E	G	E	E	E		E	E
	E	Х	E	E		С	E	E	G	G		E	G
POTASSIUM HYDRATE	E		G	E	-	G	G	G	G	G	~	E	-
	G	Х	E	E	С	G	G	G	G	G	G	E	G
POTASSIUM NITRATE	E		E	E	G	E	E	E	G	E		E	E
POTASSIUM PERMANGANATE 5 %	E		E	G	Х	E	E	C	X	G		E	E
	E		E	E	~	E	E	E	G	E		E	-
	E		E	E	G	E	E	E	E	G		E	E
POTASSIUM SULFIDE	E		E	E		G	E	E	E	G		E	E
POTASSIUM SULFITE	E	0	E	E	0	G	E	E	E	G	-	E	
PRESTONE ANTIFREEZE	E	G	E	E	G	E	C	E	G	E	E	E	
PRODUCER GAS	X		Х	G		Х	G	E		Х		E	
PROPANEDIOL	С	-	E	E	-	E	С	E	~	E		E	
PROPANETRIOL	E	E	E	E	E	E	E	E	G	E	Х	E	
PROPANOL	E	-	E	E		E	E	E		E	E	E	
PROPANOLAMINE		E											
PROPANONE	E	G	E	Х	С	С	Х	Х	E	С	E	E	
PROPEN-1-OL	E		E	E		E	E	E				E	E
PROPENEDIAMENE		E				-							
PROPENENITRILE	Х					G	Х	Х				E	
PROPENYL ALCOHOL	E		E	E		E	E	E				E	E

* compounds not in catalogue. Ask Parker for right solution

Chemical or Material Conveyed	Butyl	CPE	EPDM	CSM	трс-ет	Natural	Neoprene	Nitrile	Nylon	SBR	ТРV	PTFE	UHMWPE
					F	Z	Ne		~				Ъ
PROPENYLANISOLE	Х			Х		Х		Х				E	
PROPIONIC ACID	E		E	G		E	С	С		Х		E	
PROPIONITRILE	E		E			E	G	Х			Х	E	
PROPYL ACETATE	G		E	Х		Х	Х	Х		Х	-	E	E
	E G		E	E X		E C	E	E		E	E	E	E
PROPYL ALDEHYDE PROPYL BENZENE	G	С		Ā		U		Х				E	E
PROPYL CHLORIDE	С	U		Х		Х		Х				E	E
PROPYL ETHER	U	Е		~		~		~				L	L
PROPYL NITRATE	G	L.	G	Х		Х	Х	Х		Х		E	
PROPYLENE	X		X	X		X	X	X		X		E	
PROPYLENE DIAMINE	E		~	C		G	~	G		~		E	
PROPYLENE DICHLORIDE	-			-								_	С
PROPYLENE GLYCOL	С		E	Е		Е	С	Е		Е		Е	E
PYDRAUL, 'E' SERIES	G		G	Х	G	Х	Х	Х	G	Х		Е	E
PYDRAULIC 'C'	Х		Х	Х	С	Х	Х	Х	Е	Х	Е	Е	
PYRIDINE			G										С
PYROLIGNEOUS ACID			G										G
RESIN OIL							Х						В
QUINTOLUBRIC 822 SERIES	Х		Х			Х	Х	G					
RED OIL	Х	Х	С	G	Е	Х	С	Е	Е	Х		E	
REFRIGERANT 11	Х		Х	E	E	Х	Х	G		Х		E	
REFRIGERANT 12	С	С	С	E	E	С	Е	E	G	E	Х	E	
REFRIGERANT 22	Х	С	E	E	Х	С	E	Х	G	E	Х	E	
RESORCINOL			G		Х		Х		Х	G	Х	E	
SAE NO. 10 OIL	Х	G	Х	Х	E	Х	С	E	E	Х	Х	E	
SALAMMONIAC	E	G	E	E	E	E	E	E	С	E	_	E	
SEA WATER	E		E	E	E	E	G	E	E	E	E	E	E
SEWAGE	G		E	E	G	G	G	E	E	G	G	E	E
SILICATE ESTERS SILICATE OF SODA	C E		X E	G E	С	X E	E	G E	G	Х		E	
SILICATE OF SODA SILICONE GREASE	E		E	E	E	E	E	E	E	Е		E	
SILICONE GREASE	E		E	E	G	C	E	E	E	E		E	E
SILVER NITRATE	E		E	E	u	E	E	G	E	E		E	E
SKYDROL 500 TYPE 2	G	G	E	X	G	X	X	X	G	X	Е	E	L.
SKYDROL 500B	G	G	E	X	E	~	X	~	E	~	E	E	
SKYDROL 500C	G	G	-	X	E		X		-		-	E	
SKYDROL 7000 TYPE 2	E	G	Е	Х	Х	Х	Х	Х	E	Х		E	
SOAP SOLUTIONS	G	G	Е	Е	Е	G	G	Е	Е	G	E	Е	E
SODA ASH	E	G	Е	Е	G	Е	Е	Е	G	Е		Е	E
SODA LIME	E		E	G		E	G	G				E	E
SODA NITER	E	G	E	E	G	G	G	G	E	G		E	
SODA, CAUSTIC	E	С	E	E	С	G	Е	С	G	E	С	E	E
SODIUM ACETATE	E		E	С		E	G	G	G	Х		E	E
SODIUM ALUMINATE	E		E	E		G	Е	Е	G	G		E	E
SODIUM BICARBONATE	E		E	E	G	E	E	E	E	E		E	E
SODIUM BISULFATE	E	Х	E	E	С	E	E	G	С	G		E	E
SODIUM BISULFITE	E		E	E	G	E	E	E	E	G		E	E
	E	0	E	E	G	E	E	E	E	E		E	E
SODIUM CARBONATE 10 % - 15 %	G	G	E	E	G	E	E	E	G	E		E	E
	0	G	E	Г	E	Г	Г	Г	G	E	С	E	F
SODIUM CHLORIDE SODIUM CYANIDE	G	G	E	E	G	E	E	E	E	E	U	E	E
SODIUM DICHROMATE	E	G	C	G	G	X	C	E	G	G		E	E
SODIUM FLUORIDE	L		E	u		~	E	L	u	u		L	C
SODIUM HYDRATE	E		E	G		E	G	G	G	G		E	5
SODIUM HYDROCHLORITE	G		G	E		C	C	C	G	G		E	
SODIUM HYDROXIDE (CAUSTIC SODA)	E	С	E	E	С	E	G	C	G	G	С	E	E
SODIUM HYPOCHLORITE	G	X	G	G	C	X	C	X	X	C	C	E	E
SODIUM METAPHOSPHATE	G		E	G		E	G	E	E	E		E	E
SODIUM NITRATE	E	G	E	E	G	G	G	G	E	G		E	E
	Е	Х	Е	G	G	G	G	G	Е	G		Е	E
SODIUM PERBORATE	-				G	G	G	G	X	G		E	E
SODIUM PERBORATE SODIUM PEROXIDE	E	Х	E	G	G	u	G	u	~ ~	U U			
	E	Х	E	E	G	E	C	E	C	E		E	E
SODIUM PEROXIDE		X G											

* compounds not in catalogue. Ask Parker for right solution

STANNOUS SULFIDE Е Е Е Е Е STEARIC ACID G G G С G С G Е Е G Е Е Е Е STODDARD SOLVENT Х G Х Е Х С Е Е Х Х Е Х STYRENE MONOMER Х Х Х Х Х Х Е G Х Х SULFAMIC ACID Е Х Е G G С F SULFUR F Е Е F F Х Х Х Х SULFUR CHLORIDE С С Е Е Х G Х С С Х Х С SULFUR DIOXIDE G Е С Х С Х Х Х С Е G G С Х Х SULFUR TRIOXIDE, DRY G С Х Х Х Е SULFURIC ACID 60 % +93 °C (+200 °F) Х Х Х Х Х Х Х Х Х Е SULFURIC ACID, 25 % G Х Е Е Е G Е Е Х G Е Е SULFURIC ACID, 25 % - 50 % G Х Е G G Е Е G Е Е G Х С Х G С Х Е SULFURIC ACID, 50 % - 96 % Х С Х Х Х Е SULFURIC ACID, CONC. 96 % - 98 % Х Х Х Х Х Х Х Х Х Е Е Х Х Х SULFURIC ACID, FUMING Х Х Х Х Х Х Х Х Х Е SULFUROUS ACID, 10 % Е Е Е С G G С С G Е Е Х SULFUROUS ACID, 10 % - 85 % Е Х G Е С G С С Х С Е Е SUTAN Ε TALL OIL Х С С Е Х Е Е Х Х TALLOW G С E E E E С G Х TANNIC ACID Е Х Е Е G Е Е Е G G Е Е Е TAR. BITUMINOUS Х G Х С G С С G G Х F TAR, CAMPHOR Х Х С Х С Х Х Х G Х С Е Х TARTARIC ACID С Е G Х Е G Ε Ε Ε G Ε Е Е T-BUTYL AMINE G Х TELONE 2 TERPINOL С Е С Х Х Х G Х Е G TERTIARY BUTYL ALCOHOL G G G G G G G E E TERTIARY BUTYL AMINE G Х Е TERTIARY BUTYL MERCAPTAN Х Х Х Х Х Х Х TETRACHLOROBENZENE Х Х Х Х Е TETRACHLOROETHANE Х Х Х Х Х С Е С Х Х Х Х Х Х Х С Х Е G **TETRACHLOROETHYLENE** С **TETRACHLOROMETHANE** Х Х Х Х Х Х Ε Х Е TETRACHI ORONAPHTHAI ENE Х Х Х TETRAETHYLENE GLYCOL Е Е Е Е Ε Е **TETRAETHYLORTHOSILICATE** Е Х Х Х Е TETRAHYDROFURAN G Х Х С Х Х Х G Х Х G Х Х G Х С Х Х Х Е G THF G Х TIN CHLORIDES G Е Е Ε С Е Е Е Х Е G TITANIUM TETRACHLORIDE Х Х Х Х С Х TOLUENE Х С Х Х С Х Х Х Е Х Х Е Е TOLUENE DIISOCYANATE (TDI) Е В Е TOLUIDINE Х Х Х Х TOLUOL Х С Х Х С Х Х Х Е Х Х Е TRANSFORMER OIL G Е Е Е Х Х С Х Х TRANSMISSION 'A' OIL Х Х G G Х G Е G Х Е G Е TRI (2-HYDROXYETHYL) AMINE F G Х С G F Х TRIBUTYL AMINE Е С G G Е TRIBUTYL PHOSPHATE Е С С E E G Х G Х Х Х TRICHLOROACETIC ACID G G С С Х С Х Е Е Х Х TRICHI OROBENZENE Х F Х Х Х Х Х TRICHLOROETHANE Х Х Х Х Х Х Х Х Е TRICHLOROETHYLENE Х С Х Х Х Х Х Х С Х Х Ε G TRICHLOROMETHANE Х Х Х Х Х Х Х Х С Х Х Е TRICHLOROTOLUENE Х Ε TRICRESYL PHOSPHATE Е Е С С С Е Е Х Х G Х TRIETHANOLAMINE G Е Ε G С G Е Е Х Х С Е G G Е Х Е TRIETHYLAMINE

Chemical Resistance Table

SODIUM SULFIDE

SODIUM SULFITE

SOYBEAN OIL

SODIUM THIOSULFATE

STANNIC CHLORIDE

STANNOUS CHLORIDE

STANNIC SULFIDE

Chemical or Material

Conveyed

E = excellent; G = good; C = conditional; X = unsatisfactory

Parker

* compounds not in catalogue. Ask Parker for right solution

ТΡV

Neoprene

Е

Е

F

Е

С

Е

Nitrile

Ε

Е

F

Е

Е

Е

Е

Nylon

E

Е

G

Е

С

С

SBR

G

G

G

Х

Ε

Е

Natural

G

G

F

Х

G

Е

Е

TPC-ET

G

G

G

G

Butyl

Е

E

С

G

Е

G

CPE

G

G

Х

EPDM

Е

Е

F

Х

Ε

С

CSM

Е

Е

F

Е

С

Е

Е

UHM WPE

Е

F

Е

Е

Е

PTFE

E

Е

F

Е

Ε

Е

Е

TH31

Chemical or Material Conveyed	Butyl	CPE	EPDM	CSM	трс-ет	Natural	Neoprene	Nitrile	Nylon	SBR	TPV	PTFE	UHMWPE
TRIETHYLENE GLYCOL	E			E		E		E				E	1
TRIHYDROXYBENZOIC ACID	G		G	G	Х	E	G	G	G	G		E	
TRIMETHYL PENTANES (MIXED)	X	Е	X	C	E	X	C	E	E	X	Х	E	
TRIMETHYL PENTENE		E	~	U	L.	~	U	L.		~	~		
TRIMETHYLAMINE		E										Е	Е
TRINITROTOLUENE (TNT)		L					G					L .	L
TRISODIUM PHOSPHATE	E		Е	Е	Е	Е	E	Е	Е	Е		Е	
TRITOYL PHOSPHATE	E		E	X	C	X	X	X	G	X		E	
		С	X	Ē	G	X	Ē	Ē	G			E	Г
	X									X			E
TUNG OIL (CHINA OIL)	С	С	Х	E	G	Х	E	E	G	Х		E	E
TURBINE OIL			Х				С		_			_	В
TURPENTINEX	Х	G	Х	Х		Х	Х	Х	E	Х	Х	E	G
UDMH	E		E	E		E	G	G		Х		E	
UNDECYL ALCOHOL	E			Е		E		E				E	
UREA	E		E	E	G	Е	G	G	E			E	E
URETHANE FORMULATIONS								E	E			E	
URIC ACID					Х				G		E	E	
VARNISH	X	С	Х	Х		Х	Х	G	E	Х		E	
VEGETABLE OILS	С		С	G		Х	С	E	G	Х		E	E
VERSILUBE F44	E		E	Е		Е	Е	Е	E	Е		Е	
VERSILUBE F55	E		Х	Е		Е	E	E	E	E		E	
VINEGAR	E		E	Е	С	G	G	G	E	G		Е	Х
VINEGAR ACID	_	G	-	_	U	0.	0.	0.	_	0.		_	
VINYL ACETATE	E	0.	G	С		Х	Х	Х		Х		Х	E
VINYL BENZENE	X		X	X	Х	X	X	X		X		E	E
VINYL CHLORIDE (GAS)	X		G	~	~	G	~	~		~		E	E
VINYL CYANIDE	X	E	X	С		C	С	Х	Е	С	Х	E	L.
VINYL ETHER	X	E	~	G		X	U	G	E	C	~	E	E
	X							G		V		E	
VINYL STYRENE				X		Х		V		Х			E
VINYL TOLUENE	X			Х		Х	X	Х				E	E
VINYL TRICHLORIDE	Х			Х		Х	Х	Х	_			E	E
VITAL, 4300, 5310			Х					Х	E			E	
VM&P NAPHTHA	X		Х	Х	_	Х	С	С	_		_	E	_
WATER	E	G	E	E	E	E	G	E	E	G	E	E	E
WATER, BOILING	E		E	E	С		G	G	Х	G	G	G	Х
WATER, SODA					E				E		E	E	
WEMCO C	Х		Х	Х		Х	G	E		Х			
WHISKEY	E		E	E	G	E	E	E	E	E		E	Х
WHITE OIL	Х		Х	Х		Х	G	E		Х		E	E
WHITE PINE OIL	X		Х	Х		Х	Х	G		Х			
WINES	E		E	E	G	E	E	E	E	E		E	Х
WOOD ALCOHOL	E		E	E		E	E	E		E		E	E
WOOD OIL	С		Х	С	G	Х	G	E	G	Х		E	E
XENON	E		Е	Е		Е	Е	Е		Е		Е	
XYLENE, XYLOL	Х	С	Х	Х	С	Х	Х	Х	G	Х	Х	Е	С
XYLIDINE	G		С	Х		Х	Х	С		Х		Е	G
ZEOLITES	E		E	E		E	E	E		E			
ZINC ACETATE	E		E	С		E	G	G		X		Е	
ZINC CARBONATE	E		E	E		E	E	E		~		E	Е
ZING CHLORIDE	E	Х	E	E	E	E	E	E	Е	Е		E	E
ZINC CHROMATE	E	~	E	C	E	E	C	C	C	C		E	E
	E	V	F	E	C	Г	Г	Г	V	0		E	F
ZINC SULFATE	E	Х	E	E	С	E	E	E	Х	G			E

E = excellent; G = good; C = conditional; X = unsatisfactory

* compounds not in catalogue. Ask Parker for right solution

Chemical Resistance Guide for Silicone Hose

Acetic acid glacialBAcetic acid glacialCAcetic acid anhydrideIAcetoneXAcetyleneCAir 150 °F (65 °C)A1Aluminum chloride 150 °F (65 °C)A1Aluminum sulfate solutionA1Ammonia gas, anhydrousIAmmonia figa, anhydrousCAmmonium chlorideCAmmonium hydroxideCAmmonium blosphate monobasicA1Ammonium phosphate monobasicA1Ammonium phosphate tribasicA1Ammonium sulfateX1Aniline, Aniline oilX2Aniline, Aniline oilX1Aniline, dyesX3AsphaltIBarium chloride 150 °F (65 °C)A1Barium sulfateA2Barium sulfateA3Barium sulfateA3Barium chloride 150 °F (65 °C)A3Barium sulfateA3Barium sulfateA3Boria acidA3Boria acidA3Boria acidA3Boria acid<		
Acetic acid glacialCAcetic acid anhydrideIAcetoneXAcetyleneCAir 68 °F (20 °C)AAluminum chloride 150 °F (65 °C)AAluminum fluoride 150 °F (65 °C)AAluminum sulfate 150 °F (65 °C)AAluminum sulfate 150 °F (65 °C)AAluminum sulfate solutionAAmmonia gas, anhydrousIAmmonia 10% water solutionCAmmonium chlorideCAmmonium hydroxideCAmmonium phosphate monobasicAAmmonium phosphate tribasicAAmmonium phosphate tribasicAAmyl acetateXAniline, Aniline oilXAniline, dyesXAsphaltIBarium sulfide 150 °F (65 °C)ABarium sulfide 150 °F (65 °C)ABarium sulfide 150 °F (65 °C)ABeerABeerABearene, BenzolXBenzine, petroleum naphthaXBarium sulfide 150 °F (65 °C)ABerzine, petroleum naphthaXBerzine, petroleum naphthaXBoraxBBoric acidABromineXButaneXButyl acetateXButyl acetateXButyl acetateXButyl acetateXBoric acidXGasoline, unleadedXGasoline, unleadedXGasoline, HTBEXGasoline HTBEX	Chemical	*
Acetic acid anhydrideIAcetoneXAcetyleneCAir 68 °F (20 °C)AAir 150 °F (65 °C)AAluminum chloride 150 °F (65 °C)AAluminum sulfate 150 °F (65 °C)AAluminum sulfate 150 °F (65 °C)AAluminum sulfate solutionAAmmonia gas, anhydrousIAmmonia 10% water solutionCAmmonium chlorideCAmmonium chlorideCAmmonium hydroxideAAmmonium phosphate monobasicAAmmonium phosphate tribasicAAmmonium phosphate tribasicAAmmonium glasteXAmmonium sulfateXAmmonium sulfateXAmmonium sulfateXAniline, aniline oilXAniline, dyesXAsphaltIBarium sulfide 150 °F (65 °C)ABeerABeerABeerABeer gasABerzene, BenzolXBerzene, petroleum naphthaXBalack sulfate liquorABaroir acidABrormic acidCFormaldehydeBFormaldehydeSFormaldehydeBFormic acidCFormaldehydeBFormaldehydeAGasoline, unleadedXGasoline, unleadedXGasoline HTTBEXGasoline HTBEXGasoline HTBEXGasoline HTBE		
AcetoneXAcetyleneCAir 68 °F (20 °C)AAir 150 °F (65 °C)AAluminum chloride 150 °F (65 °C)AAluminum fluoride 150 °F (65 °C)AAluminum sulfate 150 °F (65 °C)AAluminum sulfate 150 °F (65 °C)AAmmonia gas, anhydrousIAmmonia 0%water solutionCAmmonia 0%water solutionCAmmonium chlorideCAmmonium phosphate monobasicAAmmonium phosphate tribasicAAmmonium phosphate tribasicAAmmonium phosphate tribasicAAmmonium sulfateAAmmonium sulfateXAmmonium sulfateXAmmonium sulfateXAniline, aniline oilXAniline, dyesXAsphaltIBarium chloride 150 °F (65 °C)ABarium sulfide 150 °F (65 °C)ABarium sulfide 150 °F (65 °C)ABearene, BenzolXBearine, petroleum naphthaXBlack sulfate liquorABariura caidXButaneXButaneXButaneXButyl acetateXButyl acetateXButyl acetateXButyl acetateXButyl acetateXButyl acetateXButyl acetateXButyl acetateXGasoline, unleadedXGasoline, unleadedXGasoline HiTEst + MTBE <td< td=""><td>-</td><td></td></td<>	-	
Air 68 °F (20 °C)AAir 150 °F (65 °C)AAluminum chloride 150 °F (65 °C)AAluminum sulfate 150 °F (65 °C)AAlums 150 °F (65 °C)AAlums 150 °F (65 °C)AAmmonia gas, anhydrousIAmmonia 10% water solutionAAmmonium chlorideCAmmonium othorideCAmmonium nitrateAAmmonium phosphate monobasicAAmmonium phosphate tribasicAAmmonium phosphate tribasicAAmmonium ghosphate tribasicAAmmonium sulfateXAniline, Aniline oilXAniline, dyesXAsphaltIBarium hydroxide 150 °F (65 °C)ABeerABeer So °F (65 °C)ABeer BenzolXBeer BenzolXBerzine, petroleum etherXBenzine, petroleum aphthaXBlast furnace gasABorica cidABromineXButyl acchol, ButanolCCalcium bisulfateCColacium bisulfateCColacium bisulfateCColacium bisulfateCFormic acidXGasoline, unleadedXGasoline H ITBEXGasoline H ITBEXGasoline H ITBEXGasoline H ITBEXGasoline H ITBEXGasoline H ITBEXGlueAGireen sulfate liquorAHC-		Х
Air 150 °F (65 °C)AAluminum chloride 150 °F (65 °C)BAluminum sulfate 150 °F (65 °C)AAlums 150 °F (65 °C)AAlums 150 °F (65 °C)AAmmonia gas, anhydrousIAmmonia 10% water solutionACAmmonium chlorideCCAmmonium chlorideCCAmmonium hydroxideAAmmonium phosphate solutionACAmmonium phosphate dibasicAAAmmonium phosphate dibasicAAmmonium phosphate dibasicAAmmonium sulfateAAmmonium sulfateXAniline, dyesXAsphaltIBarium chloride 150 °F (65 °C)ABarium sulfide 150 °F (65 °C)ABeerABeer leager liquorsABeer, petroleum etherXBenzine, petroleum naphthaXBlack sulfate liquorABlack sulfate liquorABurdine dilXBurdine dilXBerzine, petroleum naphthaXBerzine, petroleum naphthaXBurdine dilacteCCalcium bisulfateCFormic acidCFormic acidXGasoline + MTBEXGasoline + MTBEXGasoline + MTBEXGilueAGilueAGilueAGilueAGilueAGilueAAnAAnAnA <td></td> <td></td>		
Aluminum chloride 150 °F (65 °C)AAluminum fluoride 150 °F (65 °C)AAlums 150 °F (65 °C)AAlums 150 °F (65 °C)AAmmonia gas, anhydrousIAmmonia 10%water solutionAAmmonia 30%water solutionCAmmonium chlorideCAmmonium chlorideCAmmonium phosphate monobasicAAmmonium phosphate tribasicAAmmonium phosphate tribasicAAmmonium phosphate tribasicAAmmonium sulfateXAmiline, Aniline oilXAniline, dyesXAsphaltIBarium chloride 150 °F (65 °C)ABerzium chloride 150 °F (65 °C)ABerzium chloride 150 °F (65 °C)ABerzine, petroleum etherXBenzine, petroleum naphthaXBlack sulfate liquorABarium sulfide 150 °F (65 °C)ABerzine, petroleum naphthaXBenzine, petroleum naphthaXButaneXButaneXButyl acetateXButyl acetateXButyl acetateXButyl acetateXButyl acetateXGasoline, unleadedXGasoline H TESt + MTBEXGasoline H TESt + MTBEXGilcoseAGilveerine, glycerolAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkyl		
Aluminum fluoride 150 °F (65 °C)AAlums 150 °F (65 °C)AAlums 150 °F (65 °C)AAmmonia gas, anhydrousIAmmonia 10%water solutionCAmmonia 30%water solutionCAmmonium chlorideCAmmonium chlorideCAmmonium phosphate solutionAAmmonium phosphate dibasicAAmmonium phosphate tribasicAAmmonium phosphate tribasicAAmmonium phosphate tribasicAAmmonium sulfateXAmiline, Aniline oilXAniline, dyesXAsphaltIBarium chloride 150 °F (65 °C)ABerium sulfide 150 °F (65 °C)ABerium sulfide 150 °F (65 °C)ABerzene, BenzolXBeat sugar liquorsABenzine, petroleum etherXBlack sulfate liquorABlast furnace gasABoric acidABromineXXButyl acetateXButyl acetateXButyl acetateXButyl acetateXButyl acetateXButyl acetateXGasoline, unleadedXGasoline, unleadedXGasoline HiTES + MTBEXGasoline, fluides: PetroleumAGlueAGlueAGiveens ulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX<		
Aluminum sulfate 150 °F (65 °C)AAlums 150 °F (65 °C)AAmmonia gas, anhydrousIAmmonia 10% water solutionAAmmonia 30% water solutionCAmmonium chlorideCAmmonium hydroxideCAmmonium phosphate solutionAAmmonium phosphate monobasicAAmmonium phosphate dibasicAAmmonium phosphate tribasicAAmmonium phosphate tribasicAAmmonium phosphate tribasicAAmmonium phosphate for tribasicAAmmonium phosphate tribasicAAmiline, Aniline oilXAniline, dyesXAsphaltIBarium chloride 150 °F (65 °C)ABarium sulfide 150 °F (65 °C)ABeerABeer sugar liquorsABenzine, petroleum etherXBalack sulfate liquorABlast furnace gasABoric acidABromineXButraneXButraneXButraneXButraneXButraneXGasoline, unleadedXGasoline + MTBEXGasoline, unleadedAGiucoseAGiucoseAGiucoseAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
Ammonia gas, anhydrousIAmmonia 10%water solutionAAmmonia 30%water solutionCAmmonium chlorideCAmmonium hydroxideCAmmonium phosphate monobasicAAmmonium phosphate dibasicAAmmonium phosphate tribasicAAmmonium sulfateAAmmonium sulfateXAmiline, Aniline oilXAniline, dyesXAsphaltIBarium chloride 150 °F (65 °C)ABarium sulfide 150 °F (65 °C)ABarium sulfide 150 °F (65 °C)ABeerABeer BenzolXBenzine, petroleum etherXBenzine, petroleum naphthaXBlast furnace gasABoric acidABromineXButaneXButaneXButaneXButyl acetateXButyl acetateXButyl acetateXButyl acetateXGasoline + MTBEXGasoline + MTBEXGasoline + MTBEXGasoline + MTBEXGasoline + MTBEXGreen sulfate liquorAGreen sulfate liquorAGreen sulfate liquorAGreen sulfate liquorAGasoline + MTBEXGasoline + MTBEXGasoline + MTBEAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumC <td< td=""><td></td><td></td></td<>		
Ammonia 10% water solutionAAmmonia 30% water solutionCAmmonium chlorideCAmmonium hydroxideCAmmonium phosphate monobasicAAmmonium phosphate dibasicAAmmonium phosphate tribasicAAmmonium phosphate tribasicAAmmonium sulfateAAmmonium sulfateXAmiline, Aniline oilXAniline, Aniline oilXAniline, dyesXAsphaltIBarium chloride 150 °F (65 °C)ABarium sulfide 150 °F (65 °C)ABeerABeer BenzolXBenzene, BenzolXBenzene, petroleum etherXBariur sulfide 150 °F (65 °C)ABerzine, petroleum aphthaXBerzine, petroleum naphthaXBlast furnace gasABoric acidABromineXButyl acetateXButyl acetateXButyl acetateXButyl acetateXGasoline, unleadedCFormic acidCFormic acidXGasoline + MTBEXGasoline + MTBEXGilueAGilueAGilueAGilueAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
Ammonia 30%water solutionCAmmonium chlorideCAmmonium hydroxideCAmmonium nitrateAAmmonium phosphate monobasicAAmmonium phosphate tribasicAAmmonium phosphate tribasicAAmmonium sulfateAAmmonium sulfateXAmyl acetateXAniline, Aniline oilXAniline, dyesXAsphaltIBarium chloride 150 °F (65 °C)ABearABeerABeerABeer undition to of °F (65 °C)ABerzene, BenzolXBenzene, BenzolXBarium chloride 150 °F (65 °C)ABerzene, BenzolXBenzene, BenzolXBenzine, petroleum naphthaXBast furnace gasABoric acidABoric acidXButyl acetateXButyl acetateXButyl acetateXButyl acetateXButyl acetateXButyl alcohol, ButanolCCalcium bisulfateCFormic acidCFurfuralXGasoline, unleadedXGasoline + MTBEXGasoline + MTBEAGilucoseAGilucoseAGilucoseAAAGilucoseAAAAAAAAAA<		
Ammonium chlorideCAmmonium hydroxideCAmmonium nitrateAAmmonium phosphate monobasicAAmmonium phosphate dibasicAAmmonium phosphate tribasicAAmmonium phosphate tribasicAAmmonium phosphate tribasicAAmmonium sulfateAAmyl acetateXAmyl acetateXAniline, Aniline oilXAniline, dyesXAsphaltIBarium chloride 150 °F (65 °C)ABarium sulfide 150 °F (65 °C)ABeerABeer BeerolXBenzene, BenzolXBenzine, petroleum etherXBarlum caldete liquorABarium caldeteXBenzine, petroleum naphthaXBarturace gasABoric acidABoric acidXButyl acetateXButyl acetateXButyl acetateXButyl acetateXButyl acetateXButyl acetateXGasoline, unleadedXGasoline + MTBEXGasoline + MTBEXGasoline + MTBEXGelatinAGilucoseAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCCHydraulic fluids: Phosphate ester alkylX		
Ammonium hydroxideCAmmonium nitrateAAmmonium phosphate monobasicAAmmonium phosphate dibasicAAmmonium phosphate tribasicAAmmonium sulfateAAmyl acetateXAmiline, Aniline oilXAniline, dyesXAsphaltIBarium chloride 150 °F (65 °C)ABarium sulfide 150 °F (65 °C)ABarium sulfide 150 °F (65 °C)ABeerABeer sugar liquorsABenzine, petroleum etherXBarlane, petroleum naphthaXBlack sulfate liquorABariur dide tellateXBenzine, petroleum naphthaXBlack sulfate liquorABoric acidABromineXXButyl acetateXButyl acetateXButyl acetateXButyl acetateXFormic acidCFormic acidCFurfuralXGasoline, unleadedXGasoline Hi Test + MTBEXGilueAGilueAGreen sulfate liquorAGreen sulfate liquorAGreen sulfate liquorAGreen sulfate liquorAGasoline, unleadedAGueAGilueAGilueAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphat		
Ammonium phosphate monobasicAAmmonium phosphate dibasicAAmmonium phosphate tribasicAAmmonium sulfateAAmyl acetateXAmyl alcoholXAniline, Aniline oilXAniline, dyesXAsphaltIBarium chloride 150 °F (65 °C)ABarium sulfide 150 °F (65 °C)ABerABeerABeer sugar liquorsABenzine, petroleum etherXBenzine, petroleum naphthaXBlack sulfate liquorABast furnace gasABoric acidAButaneXButaneXButyl acetateXButyl acetateXButyl acetateXGasoline, unleadedXGasoline + MTBEXGasoline + MTBEXGasoline, glycerolAGilueAGlucoseAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
Ammonium phosphate dibasicAAmmonium phosphate tribasicAAmmonium sulfateAAmyl acetateXAmyl acetateXAnyl acoholXAniline, Aniline oilXAniline, dyesXAsphaltIBarium chloride 150 °F (65 °C)ABarium sulfide 150 °F (65 °C)ABarium sulfide 150 °F (65 °C)ABeerABeer sugar liquorsABenzine, petroleum etherXBenzine, petroleum naphthaXBlack sulfate liquorABarium bulfide 150 °F (65 °C)ABenzine, petroleum therXBenzine, petroleum naphthaXBlast furnace gasABoraxBBoric acidAButyl acetateXButyl acetateXButyl acetateXGasoline, unleadedCFormaldehydeBFormic acidXGasoline + MTBEXGasoline + MTBEXGelatinAGiucoseAGiueAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
Ammonium phosphate tribasicAAmmonium sulfateAAmyl acetateXAmyl alcoholXAniline, Aniline oilXAniline, Aniline oilXAniline, dyesXAsphaltIBarium chloride 150 °F (65 °C)ABarium sulfide 150 °F (65 °C)ABarium sulfide 150 °F (65 °C)ABeerABeerABeer, BenzolXBenzine, petroleum etherXBenzine, petroleum naphthaXBlack sulfate liquorABoric acidABoric acidAButyl acetateXButyl acetateXButyl acetateXGasoline, unleadedCFormic acidCFuerdiuralXGasoline + MTBEXGaltinAGlucoseAGiveerine, glycerolAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
Ammonium sulfateAAmmonium sulfateAAmyl acetateXAmyl alcoholXAniline, Aniline oilXAniline, dyesXAniline, dyesXAsiline, dyesXAsiline, dyesABarium chloride 150 °F (65 °C)ABeerABeerABeerABeer, benzolXBenzine, petroleum etherXBenzine, petroleum naphthaXBlack sulfate liquorABoric acidABoric acidAButyl acetateXButyl acetateXButyl acetateXButyl acetateSFormic acidCFormic acidCFurfuralXGasoline, unleadedXGasoline + MTBEXGasoline + MTBEXGlucoseAGlucoseAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
Amyl acetateXAmyl acetateXAmyl alcoholXAniline, Aniline oilXAniline, dyesXAsphaltIBarium chloride 150 °F (65 °C)ABarium sulfide 150 °F (65 °C)ABeerABeer geneABeer geneABenzene, BenzolXBenzine, petroleum etherXBenzine, petroleum naphthaXBlack sulfate liquorABoric acidABoric acidABoric acidXButyl acetateXButyl acetateXButyl acetateXButyl acetateXGasoline, unleadedXGasoline + MTBEXGasoline + MTBEXGelatinAGlucoseAGilueAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
Aniline, Aniline oilXAniline, Aniline, dyesXAsphaltIBarium chloride 150 °F (65 °C)ABarium hydroxide 150 °F (65 °C)ABarium sulfide 150 °F (65 °C)ABeerABeerABeer sugar liquorsABenzene, BenzolXBenzine, petroleum etherXBarium sulfide liquorABenzine, petroleum naphthaXBlack sulfate liquorABoric acidABoric acidABromineXButyl acetateXButyl acetateXButyl alcohol, ButanolCCalcium bisulfateCFormic acidCFurfuralXGasoline, unleadedXGasoline + MTBEXGasoline + MTBEXGelatinAGlucoseAGlucoseAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
Aniline, dyesXAsphaltIBarium chloride 150 °F (65 °C)ABarium hydroxide 150 °F (65 °C)ABarium sulfide 150 °F (65 °C)ABeerABeerABeer lugar liquorsABenzene, BenzolXBenzine, petroleum etherXBlack sulfate liquorABlast furnace gasABoric acidABromineXButaneXButyl acetateXButyl acetateCFormic acidCFormic acidCFormaldehydeBFormic acidXGasoline, unleadedXGasoline Hi Test + MTBEXGilucoseAGilucoseAGilucoseAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX	Amyl alcohol	Х
AsphaltIBarium chloride 150 °F (65 °C)ABarium hydroxide 150 °F (65 °C)ABarium sulfide 150 °F (65 °C)ABeerABeer sugar liquorsABenzene, BenzolXBenzine, petroleum etherXBlack sulfate liquorABlast furnace gasABoric acidABromineXButaneXButaneXButyl acetateXButyl acetateCFormic acidCFormic acidCFormic acidCFormic acidCFormic acidCFormic acidCFormic acidCFormaldehydeBFormic acidCFuel oilXGasoline, unleadedXGasoline Hi Test + MTBEXGelatinAGlucoseAGlucoseAGilveerine, glycerolAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
Barium chloride 150 °F (65 °C)ABarium hydroxide 150 °F (65 °C)ABarium sulfide 150 °F (65 °C)ABeerABeer sugar liquorsABenzene, BenzolXBenzine, petroleum etherXBlack sulfate liquorABlast furnace gasABorraxBBorric acidAButyl acetateXButyl acetateXButyl acetateCFormic acidCFormic acidCGasoline, unleadedXGasoline + MTBEXGasoline + MTBEXGelatinAGlucoseAGlucAGreen sulfate liquorAIdeXButyl acetateXButyl acetateCFormic acidCFormic acidCFuel oilXGasoline, unleadedAGlucoseAGlueAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
Barium hydroxide 150 °F (65 °C)ABarium sulfide 150 °F (65 °C)ABeerABeet sugar liquorsABenzene, BenzolXBenzine, petroleum etherXBenzine, petroleum naphthaXBlack sulfate liquorABlack sulfate liquorABoric acidABromineXButyl acetateXButyl alcohol, ButanolCCalcium bisulfateCFormic acidABSoric acidABButyl acetateXButyl alcohol, ButanolCCalcium bisulfateCFormic acidXGasoline, unleadedXGasoline + MTBEXGasoline Hi Test + MTBEXGlucoseAGluceAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
Barium sulfide 150 °F (65 °C)ABeerABeer sugar liquorsABenzene, BenzolXBenzine, petroleum etherXBenzine, petroleum naphthaXBlack sulfate liquorABlast furnace gasABoric acidABromineXButyl acetateXButyl alcohol, ButanolCCalcium bisulfateCFormic acidABoric acidBButyl acetateXButyl alcohol, ButanolCCalcium bisulfateCFormic acidXFurfuralXGasoline, unleadedXGasoline Hi Test + MTBEXGelatinAGlucoseAGlueAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
Beet sugar liquorsABeenzene, BenzolXBenzine, petroleum etherXBenzine, petroleum naphthaXBlack sulfate liquorABlast furnace gasABoric acidBBoric acidABromineXButaneXButyl acetateXButyl alcohol, ButanolCCalcium bisulfateCFormic acidCFormic acidCFormic acidCFurfuralXGasoline, unleadedXGasoline + MTBEXGelatinAGlucoseAGluceAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		А
Benzene, BenzolXBenzine, petroleum etherXBenzine, petroleum naphthaXBlack sulfate liquorABlast furnace gasABoraxBBoric acidABromineXButaneXButyl acetateXButyl alcohol, ButanolCCalcium bisulfateCFormic acidCFormic acidCFormic acidCFurfuralXGasoline, unleadedXGasoline + MTBEXGelatinAGlucoseAGlucoseAGluceAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
Benzine, petroleum etherXBenzine, petroleum naphthaXBlack sulfate liquorABlast furnace gasABoric acidABoric acidABromineXButaneXButyl acetateXButyl acetateCCalcium bisulfateCFormia acidCFurfuralXGasoline, unleadedXGasoline + MTBEXGalucoseAGlucoseAGlucoseAGluceAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumC	U 1	
Benzine, petroleum naphthaXBlack sulfate liquorABlast furnace gasABoraxBBoric acidABromineXButaneXButyl acetateXButyl acetateCCalcium bisulfateCFormic acidCFormaldehydeBFormic acidCFuel oilXGasoline, unleadedXGasoline + MTBEXGelatinAGlucoseAGlucAGluceAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumC		
Black sulfate liquorABlast furnace gasABoraxBBoric acidABromineXButaneXButyl acetateXButyl acetateCCalcium bisulfateCFormic acidCFormic acidCFormic acidCFuel oilXGasoline, unleadedXGasoline + MTBEXGelatinAGlucoseAGlucoseAGiveerine, glycerolAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
BoraxBBoric acidABoric acidABromineXButaneXButyl acetateXButyl acetateCCalcium bisulfateCFormic acidBFormic acidCFuel oilXGasoline, unleadedXGasoline + MTBEXGelatinAGlucoseAGluceAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
Boric acidABromineXBromineXButaneXButyl acetateXButyl acetateXButyl alcohol, ButanolCCalcium bisulfateCFormic acidBFormic acidCFuel oilXFurfuralXGasoline, unleadedXGasoline + MTBEXGelatinAGlucoseAGlueAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX	0	
BromineXButaneXButyl acetateXButyl acetateXButyl alcohol, ButanolCCalcium bisulfateCFormaldehydeBFormic acidCFuel oilXGasoline, unleadedXGasoline + MTBEXGelatinAGlucoseAGlueAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
ButaneXButaneXButyl acetateXButyl alcohol, ButanolCCalcium bisulfateCFormaldehydeBFormic acidCFuel oilXFurfuralXGasoline, unleadedXGasoline + MTBEXGelatinAGlucoseAGluceAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
Butyl acetateXButyl alcohol, ButanolCCalcium bisulfateCFormaldehydeBFormic acidCFuel oilXFurfuralXGasoline, unleadedXGasoline + MTBEXGasoline Hi Test + MTBEXGelatinAGlucoseAGluceAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
Calcium bisulfateCFormaldehydeBFormic acidCFuel oilXFurfuralXGasoline, unleadedXGasoline + MTBEXGasoline Hi Test + MTBEXGelatinAGlucoseAGluceAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
FormaldehydeBFormic acidCFuel oilXFurfuralXGasoline, unleadedXGasoline + MTBEXGasoline Hi Test + MTBEXGelatinAGlucoseAGluceAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
Formic acidCFuel oilXFurfuralXGasoline, unleadedXGasoline + MTBEXGasoline Hi Test + MTBEXGelatinAGlucoseAGluceAGlycerine, glycerolAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
Fuel oilXFurfuralXGasoline, unleadedXGasoline + MTBEXGasoline Hi Test + MTBEXGelatinAGlucoseAGluceAGlycerine, glycerolAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
FurfuralXGasoline, unleadedXGasoline + MTBEXGasoline Hi Test + MTBEXGelatinAGlucoseAGluceAGlycerine, glycerolAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
Gasoline + MTBEXGasoline Hi Test + MTBEXGelatinAGlucoseAGlueAGlycerine, glycerolAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
Gasoline Hi Test + MTBEXGelatinAGlucoseAGlueAGlycerine, glycerolAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX	Gasoline, unleaded	Х
GelatinAGlucoseAGlueAGlycerine, glycerolAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
GlucoseAGlueAGlycerine, glycerolAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
GlueAGlycerine, glycerolAGreen sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
Green sulfate liquorAHFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
HFC-134IHydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX	Glycerine, glycerol	
Hydraulic fluids: PetroleumCHydraulic fluids: Phosphate ester alkylX		
Hydraulic fluids: Phosphate ester alkyl X		
	Hydraulic fluids: Phosphate ester aryl	X
Hydraulic fluids: Phosphate ester blends X		
Hydraulic fluids: Silicate ester X		
Hydraulic fluids: Water glycol A Hydrobromic acid X		
Hydrobromic acid X Hydrochloric acid X	-	
Hydrocyanic acid B	-	
Hydrofluoric acid X		
Hydrofluosilicic acid		
Hydrogen gas 140 °F (60 °C) C		
Hydrogen peroxide A Hydrogen sulfide, dry X		
Hydrogen sulfide, wet X		

<u> </u>	
Chemical	*
Isobutyl alcohol	А
Isopropyl alcohol	А
Isooctane	Х
Kerosene	X
Lacquers Lacquers solvents	X
Lactic acid	A
Linseed oil	A
Lubricating oil, crude	С
Lubricating oil, refined	С
Magnesium chloride 150 °F (65 °C)	A
Magnesium hydroxide 150 °F (65 °C)	B
Magnesium sulfate 150 °F (65 °C) Mercuric chloride	A
Mercury	A
Methyl alcohol, methanol	A
Methyl chloride	Х
Calcium chloride	А
Calcium hydroxide	А
Calcium hypochlorite	С
Caliche liquors Cane sugar liquors	B
Carbolic acid, phenol	X
Carbon dioxide, dry-wet	A
Carbon disulfide	Х
Carbon monoxide 140 °F (60 °C)	А
Carbon tetrachloride	Х
Castor oil	A
Cellosolve acetate CFC-12	X
China wood oil, tung oil	X
Chlorine, dry/wet	X
Chlorinated solvents	Х
Chloroacetic acid	1
Chlorosulfonic acid	Х
Chromic acid	С
Citric acid Coke oven gas	A B
Copper chloride 150 °F (65 °C)	A
Copper sulfate 150 °F (65 °C)	A
Corn oil	А
Cottonseed oil	А
Creosote, coal tar	С
Creosote, coal tar wood	Х
Creosols, cresylic acid Dichlorobenzene	I X
Dichloroethylene	X
Diesel fuel	X
Diethanolamine 20%	Х
Diethylamine	В
Diisopropylamine	I
Dioctylphthalate Ethers	X X
Ethyl acetate	B
Ethyl alcohol	A
Ethyl cellulose	С
Ethyl chloride	С
Ethyl glycol	А
Ferric chloride 150 °F (65 °C)	A
Ferric sulfate 150 °F (65 °C)	B X
Methyl ethyl ketone Methyl isopropyl ketone	C
Milk	A
MTBE	1
Mineral oils	А
Natural gas	С
Nickel chloride 150 °F (65 °C)	A
Nickel sulfate 150 °F (65 °C)	A X
Nitric acid, crude Nitric acid, diluted 10%	C
Nitric acid, concentrated 70%	X

Chemical	*
Nitrobenzene	С
Oleic acid	X
Oleum	
Oxalic acid	В
Oxygen	Х
Palmitic acid	Х
Perchlorethylene	С
Petroleum oils and crude 200 °F (95 °C)	Х
Phosphoric acid, crude	C C
Phosphoric acid, pure 45% Picric acid, molten	X
Picric acid, water solution	Î
Potassium chlorite	A
Potassium cyanide	А
Potassium hydroxide	С
Potassium sulfate	А
Propane	Х
Sewage	В
Soap solution	A A
Soda ash, sodium carbonate Sodium bicarbonate, baking soda	A
Sodium bicarbonate, baking soda	A
Sodium chloride	A
Sodium cyanide	А
Sodium hydroxide to 50% at 140 °F	А
Sodium hypochlorite	В
Sodium metaphosphate	A
Sodium nitrate	X B
Sodium perborate Sodium peroxide	C
Sodium peroxide Sodium phosphate, monobasic	X
Sodium phosphate, dibasic	X
Sodium phosphate, tribasic	Х
Sodium silicate	А
Sodium sulfate	А
Sodium sulfide	A
Sodium thiosulfate, hypo Soybean oil	I A
Stannic chloride	B
Steam 450 °F (230 °C)	I
Stearic acid	A
Sulfur	В
Sulfur chloride	С
Sulfur dioxide, dry	В
Sulfur trioxide, dry	B
Sulfuric acid, 10%	X
Sulfuric acid, 11% - 75% Sulfuric acid, 76% - 95%	X X
Sulfuric acid, fuming	X
Sulfurous acid	X
Tannic acid	В
Tar	В
Tartaric acid	А
Toluene, Toluol	Х
Trichloroethylene	X
Turpentine Urea, water solution	X A
Vinegar	A
Vinyl acetate	X
Water, acid mine	А
Water, fresh	А
Water, distilled	А
Whiskey and wines	A
Xylene, xylol	X
Zinc chloride Zinc sulfate	A A
	А
* Resis	tance
A = Good Resi	

A = Good Resistance B = C = Fair Resistance Poor Resistance

Rubber Hose Dimensional Tolerances

According to norms

EN ISO 7840	
On inside diameter	
I.D. 5 mm	± 0.50 mm
I.D. 8 – 19 mm	± 0.75 mm
I.D. 25 mm	± 1.25 mm
I.D. 38 – 50 mm	± 1.50 mm
Length tolerance	± 1%

EN 12115	
On inside diameter	
I.D. 19 – 38 mm	± 0.50 mm
I.D. 50 mm	± 0.70 mm
I.D. 63.5 – 100 mm	± 0.80 mm
On outside diameter	
O.D. 31 – 51 mm	± 1.00 mm
O.D. 66 – 91 mm	± 1.20 mm
O.D. 116 mm	± 1.60 mm
Length tolerance	± 1%

± 0.40 mm
± 0.50 mm
± 1%

EN ISO 6134	
On inside diameter	
≤ I.D. 38 mm	± 0.50 mm
> I.D. 38 mm	± 0.70 mm
On outside diameter	
≤ 0.D. 48 mm	± 1.00 mm
O.D. 54 mm	± 1.20 mm
O.D. 69 mm	± 1.40 mm
Length tolerance	±1%

SAE J 30 R7	
On inside diameter	
I.D. ≤ 9.5 mm	± 0.40 mm
I.D. > 9.5 mm	± 0.60 mm
On outside diameter	
O.D. ≤ 15.9 mm	± 0.60 mm
O.D. > 15.9 mm	± 0.80 mm
Length tolerance	±1%

UNI 7140	
On inside diameter	± 0.50 mm
Length tolerance	± 1%
UNI EN ISO 1307	
On inside diameter	
I.D. ≤ 5 mm	± 0.60 mm
I.D. 6 – 20 mm	± 0.80 mm
I.D. > 20 – 25 mm	± 1.20 mm
I.D. > 25 mm	± 1.60 mm
Length tolerance	± 1%
RMA steel mandrel	
On inside diameter	
I.D. ≤ 38 mm	± 0.79 mm
I.D. 40 – 120 mm	± 1.59 mm

1.D. <u>2</u> 00 mm	± 0.75 mm
I.D. 40 – 120 mm	± 1.59 mm
I.D. > 120 mm	± 2.00 mm
On outside diameter	
O.D. ≤ 125 mm	± 1.59 mm
O.D. > 125 mm	± 2.00 mm
Tolerances on outside dia	meter are valid
for hoses without a built-in	n helix only.
Length tolerance	± 1%

PVC Hose Dimensional Tolerances

ASPIREX	
On inside diameter	±4%
On wall thickness	± 0.50 mm
Length tolerance	±1%

APERSPIR	
On inside diameter	±1%
On wall thickness	± 0.50 mm
Length tolerance	±1%
Length tolerance	± 1 70

APERFRUT	
On inside diameter	
I.D. ≤ 16 mm	± 0.50 mm
I.D. > 16 mm	± 1.00 mm
Length tolerance	±2%

VINITRESS	
On inside diameter	
I.D. ≤ 15 mm	± 0.50 mm
I.D. 16 – 19 mm	± 0.80 mm
I.D. > 19 mm	± 1.00 mm
On wall thickness	± 0.50 mm
Length tolerance	±1%

All other technical data are subject to a \pm 5 % tolerance

Parker safety guide for selecting and using hose, tubing, fittings and related accessories Parker Publication No. 4400-B.1 / Revised: September, 2015

WARNING

Failure or improper selection or improper use of hose, tubing, fittings, assemblies, valves, connectors, conductors or related accessories ("Products") can cause death, personal injury and property damage. Possible consequences of failure or improper selection or improper use of these Products include but are not limited to:

- Fittings thrown off at high speed.
- High velocity fluid discharge.
- Explosion or burning of the conveyed fluid.
- Electrocution from high voltage electric powerlines.
- · Contact with suddenly moving or falling objects that are controlled by the conveyed fluid.
- · Injections by high-pressure fluid discharge.
- Dangerously whipping Hose.
- Tube or pipe burst.
- Weld joint fracture.
- · Contact with conveyed fluids that may be hot, cold, toxic or otherwise injurious.
- Sparking or explosion caused by static electricity buildup or other sources of electricity.
- · Sparking or explosion while spraying paint or flammable liquids.
- Injuries resulting from inhalation, ingestion or exposure to fluids.

Before selecting or using any of these Products, it is important that you read and follow the instructions below. No product from any division in Fluid Connector Group is approved for in-flight aerospace applications. For hoses and fittings used in in-flight aerospace applications, please contact Parker Aerospace Group

1.0 GENERAL INSTRUCTIONS

Scope: This safety guide provides instructions for selecting and using (including assembling, installing, and maintaining) these Products. For convenience, all rubber and/or thermoplastic products commonly called "hose" or "tubing" are called "Hose" in this safety guide. Me-tallic tube or pipe are called "tube". All assemblies made with Hose are called "Hose Assemblies". All assemblies made with Tube are called "Tube Assemblies". All products commonly called "fittings", "couplings" or "adapters" are called "Fittings". Valves are fluid system components that control the passage of fluid. Related accessories are ancillary devices that enhance or monitor performance including crimping, flaring, flanging, presetting, bending, cutting, deburring, swaging machines, sensors, tags, lockout handles, spring guards and associated tooling. This safety guide is a supplement to and is to be used with the specific Parker publications for the specific Hose, Fittings and Related Accessories that are being considered for use. Parker publications are available at www.parker.com. SAE J1273 (www.sae.org) and ISO 17165-2 (www.ansi.org) also provide recommended practices for hydraulic Hose Assemblies, and should be followed.

1.1 Fail-Safe: Hose, Hose Assemblies, Tube, Tube Assemblies and Fittings can and do fail without warning for many reasons. Design all systems and equipment in a fail-safe mode, so that failure of the Hose, Hose Assembly, Tube, Tube Assembly or Fitting will not endanger persons or property.

1.2 Distribution: Provide a copy of this safety guide to each person responsible for selecting or using Hose, Tube and Fitting products. Do not select or use Parker Hose, Tube or Fittings without thoroughly reading and understanding this safety guide as well as the specific Parker publications for the Products.

1.3 User Responsibility: Due to the wide variety of operating conditions and applications for Hose, Tube and Fittings. Parker does not represent or warrant that any particular Hose, Tube or Fitting is suitable for any specific end use system. This safety guide does not analyze all technical parameters that must be considered in selecting a product. The user, through its own analysis and testing, is solely responsible for:

- Making the final selection of the Products.
- Assuring that the user's requirements are met and that the application presents no health or safety hazards.
- Following the safety guide for Related Accessories and being trained to operate Related Accessories.
- Providing all appropriate health and safety warnings on the equipment on which the Products are used.
- Assuring compliance with all applicable government and industry standards.

1.4 Additional Questions: Call the appropriate Parker technical service department if you have any questions or require any additional infor-

mation. See the Parker publication for the Products being considered or used, or call 1-800-CPARKER, or go to www.parker.com, for telephone numbers of the appropriate technical service department.

2.0 HOSE, TUBE AND FITTINGS SELECTION INSTRUCTIONS

2.1 Electrical Conductivity: Certain applications require that the Hose be nonconductive to prevent electrical current flow. Other applications require the Hose and the Fittings and the Hose/Fitting interface to be sufficiently conductive to drain off static electricity. Extreme care must be exercised when selecting Hose, Tube and Fittings for these or any other applications in which electrical conductivity or nonconductivity is a factor. The electrical conductivity or nonconductivity of Hose, Tube and Fittings is dependent upon many factors and may be susceptible to change. These factors include but are not limited to the various materials used to make the Hose and the Fittings, Fitting finish (some Fitting finishes are electrically conductive while others are nonconductive), manufacturing methods (including moisture control), how the Fittings contact the Hose, age and amount of deterioration or damage or other changes, moisture content of the Hose at any particular time, and other factors. The following are considerations for electrically nonconductive and conductive Hose. For other applications consult the individual catalog pages and the appropriate industry or regulatory standards for proper selection.

2.1.1 Electrically Nonconductive Hose: Certain applications require that the Hose be nonconductive to prevent electrical current flow or to maintain electrical isolation. For applications that require Hose to be electrically nonconductive, including but not limited to applications near high voltage electric lines, only special nonconductive Hose can be used. The manufacturer of the equipment in which the nonconductive Hose is to be used must be consulted to be certain that the Hose, Tube and Fittings that are selected are proper for the application. Do not use any Parker Hose or Fittings for any such applications near high voltage electric lines or dense magnetic fields, unless (i) the application is expressly approved in the Parker technical publication for the product, (ii) the Hose is marked "nonconductive", and (iii) the manufacturer of the equipment on which the Hose is to be used specifically approves the particular Parker Hose, Tube and Fittings for such use.

2.1.2 Electrically Conductive Hose: Parker manufactures special Hose for certain applications that require electrically conductive Hose. Parker manufactures special Hose for conveying paint in airless paint spraying applications. This Hose is labeled "Electrically Conductive Airless Paint Spray Hose" on its layline and packaging. This Hose must be properly connected to the appropriate Parker Fittings and properly grounded in order to dissipate dangerous static charge buildup, which occurs in all airless paint spraying applications. Do not use any other Hose for airless paint spraying, even if electrically conductive. Use of any other Hose or failure to properly connect the Hose can cause a fire or an explosion resulting in death, personal injury, and property damage. All hoses that convey fuels must be grounded. Parker manufactures a special Hose for

certain compressed natural gas ("CNG") applications where static electricity buildup may occur. Parker CNG Hose assemblies comply with the requirements of ANSI/IAS NGV 4.2; CSA 12.52, "Hoses for Natural Gas Vehicles and Dispensing Systems" (www.ansi.org). This Hose is labeled "Electrically Conductive for CNG Use" on its layline and packaging. This Hose must be properly connected to the appropriate Parker Fittings and properly grounded in order to dissipate dangerous static charge buildup, which occurs in, for example, high velocity CNG dispensing or transfer. Do not use any other Hose for CNG applications where static charge buildup may occur, even if electrically conductive. Use of other Hoses in CNG applications or failure to properly connect or ground this Hose can cause a fire or an explosion resulting in death, personal injury, and property damage. Care must also be taken to protect against CNG permeation through the Hose wall. See section 2.6, Permeation, for more information. Parker CNG Hose is intended for dispenser and vehicle use within the specified temperature range. Parker CNG Hose should not be used in confined spaces or unventilated areas or areas exceeding the specified temperature range. Final assemblies must be tested for leaks. CNG Hose Assemblies should be tested on a monthly basis for conductivity per ANSI/IAS NGV 4.2; CSA 12.52. Parker manufactures special Hose for aerospace in-flight applications. Aerospace in-flight applications employing Hose to transmit fuel, lubricating fluids and hydraulic fluids require a special Hose with a conductive inner tube. This Hose for in-flight applications is available only from Parker's Stratoflex Products Division. Do not use any other Parker Hose for inflight applications, even if electrically conductive. Use of other Hoses for in-flight applications or failure to properly connect or ground this Hose can cause a fire or an explosion resulting in death, personal injury and property damage. These Hose assemblies for in-flight applications must meet all applicable aerospace industry, aircraft engine and aircraft requirements.

2.2 Pressure: Hose, Tube and Fitting selection must be made so that the published maximum working pressure of the Hose, Tube and Fittings are equal to or greater than the maximum system pressure. The maximum working pressure of a Hose, or Tube Assembly is the lower of the respective published maximum working pressures of the Hose, Tube and the Fittings used. Surge pressures or peak transient pressures in the system must be below the published maximum working pressure for the Hose, Tube and Fitting. Surge pressures and peak pressures can usually only be determined by sensitive electrical instrumentation that measures and indicates pressures at millisecond intervals. Mechanical pressure gauges indicate only average pressures and cannot be used to determine surge pressures or peak transient pressures. Published burst pressure ratings for Hose is for manufacturing test purposes only and is no indication that the Product can be used in applications at the burst pressure or otherwise above the published maximum recommended working pressure.

2.3 Suction: Hoses used for suction applications must be selected to insure that the Hose will withstand the vacuum and pressure of the system. Improperly selected Hose may collapse in suction application.

2.4 Temperature: Be certain that fluid and ambient temperatures, both steady and transient, do not exceed the limitations of the Hose, Tube, Fitting and Seals. Temperatures below and above the recommended limit can degrade Hose, Tube, Fittings and Seals to a point where a failure may occur and release fluid. Tube and Fittings performances are normally degraded at elevated temperature. Material compatibility can also change at temperatures outside of the rated range. Properly insulate and protect the Hose Assembly when routing near hot objects (e.g. manifolds). Do not use any Hose in any application where failure of the Hose could result in the conveyed fluids (or vapors or mist from the conveyed fluids) contacting any open flame, molten metal, or other potential fire ignition source that could cause burning or explosion of the conveyed fluids or vapors.

2.5 Fluid Compatibility: Hose, and Tube Assembly selection must assure compatibility of the Hose tube, cover, reinforcement, Tube, Plating and Seals with the fluid media used. See the fluid compatibility chart in the Parker publication for the product being considered or used. This information is offered only as a guide. Actual service life can only be determined by the end user by testing under all extreme conditions and other analysis. Hose, and Tube that is chemically compatible with a particular fluid must be assembled using Fittings and adapters containing likewise compatible seals. Flange or flare processes can change Tube material properties that may not be compatible with certain requirements such as NACE

2.6 Permeation: Permeation (that is, seepage through the Hose or Seal) will occur from inside the Hose or Fitting to outside when Hose

or Fitting is used with gases, liquid and gas fuels, and refrigerants (including but not limited to such materials as helium, diesel fuel, gasoline, natural gas, or LPG). This permeation may result in high concentrations of vapors which are potentially flammable, explosive, or toxic, and in loss of fluid. Dangerous explosions, fires, and other hazards can result when using the wrong Hose for such applications. The system designer must take into account the fact that this permeation will take place and must not use Hose or Fitting if this permeation could be hazardous. The system designer must take into account all legal, government, insurance, or any other special regulations which govern the use of fuels and refrigerants. Never use a Hose or Fitting even though the fluid compatibility is acceptable without considering the potential hazardous effects that can result from permeation through the Hose or Tube Assembly. Permeation of moisture from outside the Hose or Fitting to inside the Hose or Fitting will also occur in Hose or Tube assemblies, regardless of internal pressure. If this moisture permeation would have detrimental effects (particularly, but not limited to refrigeration and air conditioning systems), incorporation of sufficient drying capacity in the system or other appropriate system safeguards should be selected and used. The sudden pressure release of highly pressurized gas could also result in Explosive Decompression failure of permeated Seals and Hoses.

2.7 Size: Transmission of power by means of pressurized fluid varies with pressure and rate of flow. The size of the components must be adequate to keep pressure losses to a minimum and avoid damage due to heat generation or excessive fluid velocity.

2.8 Routing: Attention must be given to optimum routing to minimize inherent problems (kinking or flow restriction due to Hose collapse, twisting of the Hose, proximity to hot objects or heat sources). For additional routing recommendations see SAE J1273 and ISO 17165-2. Hose Assemblies have a finite life and should be installed in a manner that allows for ease of inspection and future replacement. Hose because of its relative short life, should not be used in residential and commercial buildings inside of inaccessible walls or floors, unless specifically allowed in the product literature. Always review all product literature for proper installation and routing instructions.

2.9 Environment: Care must be taken to insure that the Hose, Tube and Fittings are either compatible with or protected from the environment (that is, surrounding conditions) to which they are exposed. Environmental conditions including but not limited to ultraviolet radiation, sunlight, heat, ozone, moisture, water, salt water, chemicals and air pollutants can cause degradation and premature failure.

2.10 Mechanical Loads: External forces can significantly reduce Hose, Tube and Fitting life or cause failure. Mechanical loads which must be considered include excessive flexing, twist, kinking, tensile or side loads, bend radius, and vibration. Use of swivel type Fittings or adapters may be required to insure no twist is put into the Hose. Use of proper Hose or Tube clamps may also be required to reduce external mechanical loads. Unusual applications may require special testing prior to Hose selection.

2.11 Physical Damage: Care must be taken to protect Hose from wear, snagging, kinking, bending smaller that minimum bend radius and cutting, any of which can cause premature Hose failure. Any Hose that has been kinked or bent to a radius smaller than the minimum bend radius, and any Hose that has been cut or is cracked or is otherwise damaged should be removed and discarded. Fittings with damages such as scratches on sealing surfaces and deformation should be replaced.

2.12 Proper End Fitting: See instructions 3.2 through 3.5. These recommendations may be substantiated by testing to industry standards such as SAE J517 for hydraulic applications, or MIL-A-5070, AS1339, or AS3517 for Hoses from Parker's Stratoflex Products Division for aerospace applications.

2.13 Length: When determining the proper Hose or Tube length of an assembly, be aware of Hose length change due to pressure, Tube length change due to thermal expansion or contraction, and Hose or Tube and machine tolerances and movement must be considered. When routing short hose assemblies, it is recommended that the minimum free hose length is always used. Consult the hose manufacturer for their minimum free hose length recommendations. Hose assemblies should be installed in such a way that any motion or flexing occurs within the same plane.

2.14 Specifications and Standards: When selecting Hose, Tube and Fittings, government, industry, and Parker specifications and recommendations must be reviewed and followed as applicable.

2.15 Hose Cleanliness: Hose and Tube components may vary in cleanliness levels. Care must be taken to insure that the Hose and

Tube Assembly selected has an adequate level of cleanliness for the application.

2.16 Fire Resistant Fluids: Some fire resistant fluids that are to be conveyed by Hose or Tube require use of the same type of Hose or Tube as used with petroleum base fluids. Some such fluids require a special Hose, Tube, Fitting and Seal, while a few fluids will not work with any Hose at all. See instructions 2.5 and 1.5. The wrong Hose, Tube, Fitting or Seal may fail after a very short service. In addition, all liquids but pure water may burn fiercely under certain conditions, and even pure water leakage may be hazardous.

2.17 Radiant Heat: Hose and Seals can be heated to destruction without contact by such nearby items as hot manifolds or molten metal. The same heat source may then initiate a fire. This can occur despite the presence of cool air around the Hose or Seal. Performance of Tube and Fitting subjected to the heat could be degraded.

2.18 Welding or Brazing: When using a torch or arc welder in close proximity to hydraulic lines, the hydraulic lines should be removed or shielded with appropriate fire resistant materials. Flame or weld spatter could burn through the Hose or Seal and possibly ignite escaping fluid resulting in a catastrophic failure. Heating of plated parts, including Hose Fittings and adapters, above 450°F (232°C) such as during welding, brazing or soldering may emit deadly gases. Any elastomer seal on fittings shall be removed prior to welding or brazing, any metallic surfaces shall be protected after brazing or welding when necessary. Welding and brazing filler material shall be compatible with the Tube and Fitting that are joined.

2.19 Atomic Radiation: Atomic radiation affects all materials used in Hose and Tube assemblies. Since the long-term effects may be unknown, do not expose Hose or Tube assemblies to atomic radiation. Nuclear applications may require special Tube and Fittings.

2.20 Aerospace Applications: The only Hose, Tube and Fittings that may be used for in-flight aerospace applications are those available from Parker's Stratoflex Products Division. Do not use any other Hose or Fittings for in-flight applications. Do not use any Hose or Fittings from Parker's Stratoflex Products Division with any other Hose or Fittings, unless expressly approved in writing by the engineering manager or chief engineer of Stratoflex Products Division and verified by the user's own testing and inspection to aerospace industry standards.

2.21 Unlocking Couplings: Ball locking couplings or other Fittings with quick disconnect ability can unintentionally disconnect if they are dragged over obstructions, or if the sleeve or other disconnect member, is bumped or moved enough to cause disconnect. Threaded Fittings should be considered where there is a potential for accidental uncoupling.

3.0 HOSE AND FITTINGS ASSEMBLY AND INSTALLATION IN-STRUCTIONS

3.1 Component Inspection: Prior to assembly, a careful examination of the Hose and Fittings must be performed. All components must be checked for correct style, size, catalog number, and length. The Hose must be examined for cleanliness, obstructions, blisters, cover looseness, kinks, cracks, cuts or any other visible defects. Inspect the Fitting and sealing surfaces for burrs, nicks, corrosion or other imperfections. Do NOT use any component that displays any signs of nonconformance.

3.2 Hose and Fitting Assembly: Do not assemble a Parker Fitting on a Parker Hose that is not specifically listed by Parker for that Fitting, unless authorized in writing by the engineering manager or chief engineer of the appropriate Parker division. Do not assemble a Parker Fitting on another manufacturer's Hose or a Parker Hose on another manufacturer's Fitting unless (i) the engineering manager or chief engineer of the appropriate Parker division approves the Assembly in writing or that combination is expressly approved in the appropriate Parker literature for the specific Parker product, and

(ii) the user verifies the Assembly and the application through analysis and testing. For Parker Hose that does not specify a Parker Fitting, the user is solely responsible for the selection of the proper Fitting and Hose Assembly procedures. See instruction 1.4. To prevent the possibility of problems such as leakage at the Fitting or system contamination, it is important to completely remove all debris from the cutting operation before installation of the Fittings. The Parker published instructions must be followed for assembling the Fitting catalog for the specific Parker Fitting being used, or by calling 1-800-CPARKER, or at www.parker.com.

3.3 Related Accessories: Do not crimp or swage any Parker Hose or Fitting with anything but the listed swage or crimp machine and dies in accordance with Parker published instructions. Do not crimp or swage another manufacturer's Fitting with a Parker crimp or swage die unless authorized in writing by the engineering manager or chief engineer of the appropriate Parker division.

3.4 Parts: Do not use any Parker Fitting part (including but not limited to socket, shell, nipple, or insert) except with the correct Parker mating parts, in accordance with Parker published instructions, unless authorized in writing by the engineering manager or chief engineer of the appropriate Parker division.

3.5 Field Attachable/Permanent: Do not reuse any field attachable Hose Fitting that has blown or pulled off a Hose. Do not reuse a Parker permanent Hose Fitting (crimped or swaged) or any part thereof. Complete Hose Assemblies may only be reused after proper inspection under section 4.0. Do not assemble Fittings to any previously used hydraulic Hose that was in service, for use in a fluid power application.

3.6 Pre-Installation Inspection: Prior to installation, a careful examination of the Hose Assembly must be performed. Inspect the Hose Assembly for any damage or defects. DO NOT use any Hose Assembly that displays any signs of nonconformance.

3.7 Minimum Bend Radius: Installation of a Hose at less than the minimum listed bend radius may significantly reduce the Hose life. Particular attention must be given to preclude sharp bending at the Hose to Fitting juncture. Any bending during installation at less than the minimum bend radius must be avoided. If any Hose is kinked during installation, the Hose must be discarded.

3.8 Twist Angle and Orientation: Hose Assembly installation must be such that relative motion of machine components does not produce twisting.

3.9 Securement: In many applications, it may be necessary to restrain, protect, or guide the Hose to protect it from damage by unnecessary flexing, pressure surges, and contact with other mechanical components. Care must be taken to insure such restraints do not introduce additional stress or wear points.

3.10 Proper Connection of Ports: Proper physical installation of the Hose Assembly requires a correctly installed port connection insuring that no twist or torque is transferred to the Hose when the Fittings are being tightened or otherwise during use.

3.11 External Damage: Proper installation is not complete without insuring that tensile loads, side loads, kinking, flattening, potential abrasion, thread damage or damage to sealing surfaces are corrected or eliminated. See instruction 2.10.

3.12 System Checkout: All air entrapment must be eliminated and the system pressurized to the maximum system pressure (at or below the Hose maximum working pressure) and checked for proper function and freedom from leaks. Personnel must stay out of potential hazard-ous areas while testing and using.

3.13 Routing: The Hose Assembly should be routed in such a manner so if a failure does occur, the escaping media will not cause personal injury or property damage. In addition, if fluid media comes in contact with hot surfaces, open flame or sparks, a fire or explosion may occur. See section 2.4.

3.14 Ground Fault Equipment Protection Devices (GFEPDs): WARN-ING! Fire and Shock Hazard. To minimize the danger of fire if the heating cable of a Multitube bundle is damaged or improperly installed, use a Ground Fault Equipment Protection Device. Electrical fault currents may be insufficient to trip a conventional circuit breaker. For ground fault protection, the IEEE 515: (www.ansi.org) standard for heating cables recommends the use of GFEPDs with a nominal 30 milliampere trip level for "piping systems in classified areas, those areas requiring a high degree of maintenance, or which may be exposed to physical abuse or corrosive atmospheres".

4.0 TUBE AND FITTINGS ASSEMBLY AND INSTALLATION INSTRUCTIONS

4.1 Component Inspection: Prior to assembly, a careful examination of the Tube and Fittings must be performed. All components must be checked for correct style, size, material, seal, and length. Inspect the Fitting and sealing surfaces for burrs, nicks, corrosion, missing seal or other imperfections. Do NOT use any component that displays any signs of nonconformance.

4.2 Tube and Fitting Assembly: Do not assemble a Parker Fitting with a Tube that is not specifically listed by Parker for that Fitting, unless authorized in writing by the engineering manager or chief engineer of the appropriate Parker division. The Tube must meet the requirements specified to the Fitting. The Parker published instructions must

be followed for assembling the Fittings to a Tube. These instructions are provided in the Parker Fitting catalog for the specific Parker Fitting being used, or by calling 1-800-CPARKER, or at www.parker.com.

4.3 Related Accessories: Do not preset or flange Parker Fitting components using another manufacturer's equipment or procedures unless authorized in writing by the engineering manager or chief engineer of the appropriate Parker division. Tube, Fitting component and tooling must be check for correct style, size and material. Operation and maintenance of Related Accessories must be in accordance with the operation manual for the designated Accessory.

4.4 Securement: In many applications, it may be necessary to restrain, protect, or guide the Tube to protect it from damage by unnecessary flexing, pressure surges, vibration, and contact with other mechanical components. Care must be taken to insure such restraints do not introduce additional stress or wear points.

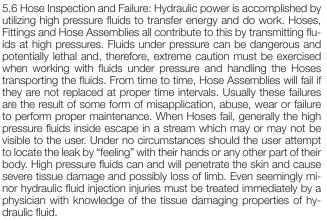
4.5 Proper Connection of Ports: Proper physical installation of the Tube Assembly requires a correctly installed port connection insuring that no torque is transferred to the Tube when the Fittings are being tightened or otherwise during use.

4.6 External Damage: Proper installation is not complete without insuring that tensile loads, side loads, flattening, potential abrasion, thread damage or damage to sealing surfaces are corrected or eliminated. See instruction 2.10.

4.7 System Checkout: All air entrapment must be eliminated and the system pressurized to the maximum system pressure (at or below the Tube Assembly maximum working pressure) and checked for proper function and freedom from leaks. Personnel must stay out of potential hazardous areas while testing and using.

Routing: The Tube Assembly should be routed in such a manner so if a failure does occur, the escaping media will not cause personal injury or property damage. In addition, if fluid media comes in contact with hot surfaces, open flame or sparks, a fire or explosion may occur. See section 2.4.

5.0 HOSE AND FITTING MAINTENANCE AND REPLACEMENT INSTRUCTIONS


5.1 Even with proper selection and installation, Hose life may be significantly reduced without a continuing maintenance program. The severity of the application, risk potential from a possible Hose failure, and experience with any Hose failures in the application or in similar applications should determine the frequency of the inspection and the replacement for the Products so that Products are replaced before any failure occurs. Certain products require maintenance and inspection per industry requirements. Failure to adhere to these requirements may lead to premature failure. A maintenance program must be established and followed by the user and, at minimum, must include instructions 5.2 through 5.7

5.2 Visual Inspection Hose/Fitting: Any of the following conditions require immediate shut down and replacement of the Hose Assembly:Fitting slippage on Hose;

- Damaged, cracked, cut or abraded cover (any reinforcement exposed);
- Hard, stiff, heat cracked, or charred Hose;
- Cracked, damaged, or badly corroded Fittings;
- Leaks at Fitting or in Hose;
- Kinked, crushed, flattened or twisted Hose; and
- Blistered, soft, degraded, or loose cover.
- 5.3 Visual Inspection All Other: The following items must be tightened, repaired, corrected or replaced as required:
- Leaking port conditions;
- Excess dirt buildup;
- Worn clamps, guards or shields; and
- System fluid level, fluid type, and any air entrapment.

5.4 Functional Test: Operate the system at maximum operating pressure and check for possible malfunctions and leaks. Personnel must avoid potential hazardous areas while testing and using the system. See section 2.2.

5.5 Replacement Intervals: Hose assemblies and elastomeric seals used on Hose Fittings and adapters will eventually age, harden, wear and deteriorate under thermal cycling and compression set. Hose Assemblies and elastomeric seals should be inspected and replaced at specific replacement intervals, based on previous service life, government or industry recommendations, or when failures could result in unacceptable downtime, damage, or injury risk. See section 1.2. Hose and Fittings may be subjected to internal mechanical and/or chemical wear from the conveying fluid and may fail without warning. The user must determine the product life under such circumstances by testing. Also see section 2.5.

If a Hose failure occurs, immediately shut down the equipment and leave the area until pressure has been completely released from the Hose Assembly. Simply shutting down the hydraulic pump may or may not eliminate the pressure in the Hose Assembly. Many times check valves, etc., are employed in a system and can cause pressure to remain in a Hose Assembly even when pumps or equipment are not operating. Tiny holes in the Hose, commonly known as pinholes, can eject small, dangerously powerful but hard to see streams of hydraulic fluid. It may take several minutes or even hours for the pressure to be relieved so that the Hose Assembly may be examined safely. Once the pressure has been reduced to zero, the Hose Assembly may be taken off the equipment and examined. It must always be replaced if a failure has occurred. Never attempt to patch or repair a Hose Assembly that has failed. Consult the nearest Parker distributor or the appropriate Parker division for Hose Assembly replacement information. Never touch or examine a failed Hose Assembly unless it is obvious that the Hose no longer contains fluid under pressure. The high pressure fluid is extremely dangerous and can cause serious and potentially fatal injury.

5.7 Elastomeric seals: Elastomeric seals will eventually age, harden, wear and deteriorate under thermal cycling and compression set. Elastomeric seals should be inspected and replaced.

5.8 Refrigerant gases: Special care should be taken when working with refrigeration systems. Sudden escape of refrigerant gases can cause blindness if the escaping gases contact the eye and can cause freezing or other severe injuries if it contacts any other portion of the body.

5.9 Compressed natural gas (CNG): Parker CNG Hose Assemblies should be tested after installation and before use, and at least on a monthly basis per instructions provided on the Hose Assembly tag. The recommended procedure is to pressurize the Hose and check for leaks and to visually inspect the Hose for damage and to perform an electrical resistance test.

Caution: Matches, candles, open flame or other sources of ignition shall not be used for Hose inspection. Leak check solutions should be rinsed off after use.

6.0 HOSE STORAGE

6.1 Age Control: Hose and Hose Assemblies must be stored in a manner that facilitates age control and first-in and first-out usage based on manufacturing date of the Hose and Hose Assemblies. Unless otherwise specified by the manufacturer or defined by local laws and regulations:

6.1.1 The shelf life of rubber hose in bulk form or hose made from two or more materials is 28 quarters (7 years) from the date of manufacture, with an extension of 12 quarters (3 years), if stored in accordance with ISO 2230;

6.1.2 The shelf life of thermoplastic and polytetrafluoroethylene hose is considered to be unlimited;

6.1.3 Hose assemblies that pass visual inspection and proof test shall not be stored for longer than 2 years.

6.1.4 Storage: Stored Hose and Hose Assemblies must not be subjected to damage that could reduce their expected service life and must be placed in a cool, dark and dry area with the ends capped. Stored Hose and Hose Assemblies must not be exposed to temperature extremes, ozone, oils, corrosive liquids or fumes, solvents, high humidity, rodents, insects, ultraviolet light, electromagnetic fields or radioactive materials.

Critical Applications

Safety

It is important to employ safe practices in the use of industrial hose due to the number of potentially dangerous applications encountered and products conveyed, and the number of people that may be involved or exposed. Strictly observe these simple practices to help avoid accidents.

- Training: Train all operators thoroughly
- Evaluation: Evaluate the application to determine the hose performance requirements
- Selection: Select the most appropriate hose and couplings for the application; ensure that the couplings are compatible with the media and hose, and securely attached to the hose
- Service: Regularly inspect and maintain both the hose and couplings while in service

While many industrial hose applications are potentially dangerous, some are of particular concern because their danger may not be readily apparent. This is especially true for applications involving untrained or inexperienced operators.

Anhydrous Ammonia (NH3) Hose

Many accidents involving anhydrous ammonia occur due to selection of an incorrect hose for the application. Anhydrous ammonia hose must be specially designed and compounded to handle the media, with a perforated cover to prevent gas build-up amidst the layers of hose.

WARNING! Use ONLY anhydrous ammonia hose for anhydrous ammonia service. Contact with anhydrous ammonia in its liquid or gaseous (vapor) phase will burn skin, eyes and lungs, causing serious bodily injury or death.

- Do not use anhydrous ammonia hose for LPG service. It may fail suddenly and quickly. Anhydrous ammonia hose and LPG hose are frequently used in proximity and may be accidentally switched.
- Do not use with couplings containing o-rings, which may dry out, crack and fail over time. Do not use with male swivel couplings or other couplings containing hidden o-rings.

Anhydrous ammonia hose is designed to allow a limited amount of permeation of gas through the wall of the hose when in service, and staining of the hose cover in the pinpricked areas does not necessarily indicate leakage for a hose in service. However, a visible gas mist escaping through the hose is an indication of leakage. To verify the integrity of a hose in service, perform a hydrostatic test on the assembly; immediately remove from service any that fail the test.

Note: For non-agricultural or refrigeration applications, contact Parker.

Chemical Hose

A chemical hose system failure could cause the release of poisonous, corrosive, or flammable material resulting in property damage, serious bodily injury or death. All reputable manufacturers of chemical hose recommend specific hose constructions to handle various chemicals.

Refer to the chemical guides in this catalog, or contact Parker for technical assistance before using or recommending a hose product.

Handling

- Use care to prevent mishandling. Crushing or kinking of the hose can cause severe damage to the reinforcement.
- Use proper hose suspension equipment when lifting or dragging a hose to ensure that the recommended curvature is not exceeded. Avoid sharp bends at the end fittings and at manifold connections.

Operation

• Use safety precautions such as wearing eye or face protection, rubber gloves, boots, and other types of protective clothing.

Gasoline Dispenser Hose

Millions of consumers operate gasoline pumps every day, increasing the concern for the safe use of dispensing equipment, including the hose. Since gasoline dispenser hoses are subject to frequent abuse, hose selection must include consideration of the rigors of the application. For maximum service life, select only the highest quality.

Note: To avoid fuel contamination do not use gasoline dispenser or farm pump hose to fuel aircraft.

- Monitor pressures and temperatures to ensure that the hose is not exposed to conditions above specified limits.
- Do not allow chemicals to contact the exterior of the hose or allow hose to lie in a pool of chemicals since the hose cover may not have the same level of corrosion resistance as the tube. Corrosive materials that come into contact with the reinforcing material will cause reduced service life and premature hose failure.

Temperature

Do not use chemical hose at pressures or temperatures exceeding those as specified for the product. Many chemical resistance guides are based on temperatures of 70°F (21°C). Elevated temperatures can change the chemical resistance ratings. Many chemicals will become more aggressive as temperatures increase, reducing the ability of hose compounds to withstand them. Contact Parker for chemical compatibility data at elevated temperatures. If no data exists, end users are required to perform compatibility testing at the desired temperature.

LP Gas (Propane) Hose

Many accidents involving LP Gas occur due to selection of an incorrect hose for the application. LP Gas hose must be specially designed and compounded to handle the media, with a perforated cover to prevent gas buildup amidst the layers of the hose.

WARNING! Use ONLY LP Gas hose for LP Gas service. LP Gas possesses volatile characteristics that may produce fire or explosions causing property damage, serious bodily injury or death.

- Do not use LP Gas hose for anhydrous ammonia service. It may fail suddenly and quickly. Anhydrous ammonia hose and LPG hose are frequently used in proximity and may be accidentally switched.
- Do not use with couplings containing o-rings, which may dry out, crack and fail over time. Do not use with male swivel couplings or other couplings containing hidden o-rings.

LP Gas hose is designed to allow a limited amount of permeation of LP Gas through the wall of the hose when in service. The permeation is apparent when the hose is moist or in water, and bubbles may be perceived as leakage. However, a legitimate propane leak creates a frosting or icing on the surface of the hose or coupling.

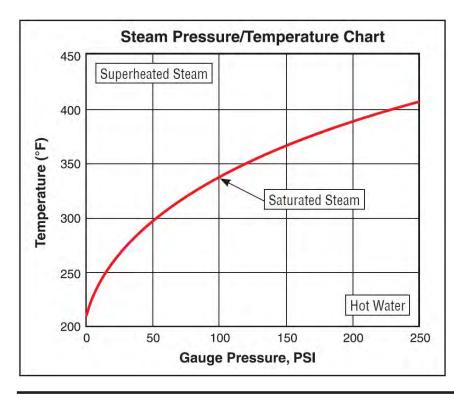
To verify the integrity of a hose in service, perform a hydrostatic test on the assembly; immediately remove from service any hose that fails the test.

Natural Gas and LP Gas Hose

The molecules of natural gas are small, enhancing their ability to permeate through standard rubber or PVC hose constructions. The permeation process is more rapid as the working pressure increases, and natural gas accumulates with potentially dangerous consequences.

- Use only in a well-ventilated environment: Outdoors, or indoors with significant continuous air movement.
- Do not use LP Gas hose to replace fixed/rigid pipe where that material is more appropriate due to reduced permeation, overall strength and durability. Use rigid pipe, non-permeable tubing or hose with barrier constructions to convey natural gas whenever possible.

Steam Hose


Water changes to hot water and phases of steam when subjected to heat and pressure. The greater the pressure, the higher the temperature required to achieve and maintain a steam phase. If steam escapes, dangerous quantities of heat may be released very suddenly.

WARNING! Hot water, low pressure steam and high pressure steam may escape explosively and will scald skin, eyes and lungs, which may lead to severe bodily injury or death.

- Petroleum Transfer Hose
- Do not use for oil or fuel transfer service in or on open water. Hose damage or failure may result in spillage and environmental damage. Use hose specifically designed for this application.
- Do not immerse in fuel. The hose cover compound may not be of sufficient grade to resist attack by the fuel. Use hose specifically designed for this application.

- Many steam systems incorporate detergents or rust inhibitors which may attack steam hose. Prior to using a steam hose with detergents or rust inhibitors, refer to the chemical guides in this catalog, or contact Parker.
- Drain steam hose after each use to reduce the possibility of hose popcorning while in service.

The chart at the right represents the three forms of water when subjected to various combinations of heat and pressure. The red line represents the point at which hot water becomes saturated steam. The area below the red line is hot water; the area above the red line is superheated steam.

Welding Hose

Many accidents involving welding hose occur due to selection of an incorrect hose for the application. Welding hose must be specially designed and compounded to handle the media. Due to the extreme volatility of gases, the varying compatibility of gases with the various grades of hose, and the rough environment of many welding applications, it is crucial to select the correct welding hose.

WARNING! Welding gases possess volatile characteristics that may produce fire or explosions causing property damage, serious bodily injury or death.

- Replace all assemblies that show signs of abrading, abuse, age, damage or fatigue. Do not attempt to recouple, repair or splice hose assemblies.
- Fabricate hose assemblies using only crimped-on ferrules at least 25 mm long to ensure coverage and support of the coupling stem inside the hose.
- Couplings attached with bands or clamps may reduce the working pressure of the hose assembly to less than the maximum rated working pressure of the hose.

PVC / Thermoplastic Hose

Thermoplastic polymer compounds are designed to resist deterioration when exposed to a wide range of commercial chemicals and environmental conditions. The resistance to attack is based on many factors, including temperature, pressure, chemical concentration, exposure to ultraviolet light, velocity of the media and duration of exposure/ service (intermittent or constant). The user is solely responsible for making the final selection of the hose and tubing, and meeting all endurance, maintenance, performance, safety and warning requirements of the application.

WARNING! As temperature increases or decreases, burst pressure, safe working pressure, coupling retention properties, and other safety characteristics of the hose can significantly decrease. Failure to consider how temperature and other conditions affect hose performance may cause property damage, serious bodily injury or death.

ENGINEERING YOUR SUCCESS.

A – Oil & Fuel

Hose	ID Range (mm)	Temp. Range (°C)	Application
CARBOPRESS N/L 10	5 - 25	-25 / +80	fuel, oil, petrol aromatic < 50 %
CARBURITE 10	19 - 150	-30 / +80	fuel, oil, petrol aromatic < 50 %
CARBOCORD EN 12115	19 - 63.5	-25 / +80	fuel, oil, petrol aromatic < 50 %
CHEMIOEL EN 12115	19 - 100	-25 / +80	fuel, oil, petrol aromatic < 50 %
CERVINO EN 12115	50 - 63.5	-40 / +80	fuel, oil, petrol aromatic < 50 %
E-Z FORM™ HT	12.7 - 25.4	-40 / +150	petrobased oil suc./ret. line, power stee

A2

A – Oil & Fuel

	Tube	Reinforce- ment	Cover	WP (bar)	Design Factor	Suction	Industry standard	Page
	NBR	textile	NBR	10	3			A4
	NBR	textile	NBR/SBR	10	3	yes		A5
	NBR	textile + copper wires	NBR/SBR	16	4		EN 12115	A6
	NBR	textile + copper wires	NBR/SBR	16	4	yes	EN 12115	A7
	NBR	textile + copper wires	NBR/SBR	16	4	yes	EN 12115	A 8
ering	CPE	textile	HNBR	10	4	yes		A9

CARBOPRESS N/L 10

Suitable for fuel oils, petrol and diesel having an aromatic content not exceeded 50 % and also for grease.

Hose Construction

Tube:	Black, smooth,
	NBR rubber compound
Reinforcement:	Synthetic textile yarns
Cover:	Black, smooth, abrasion, oil, fuel,
	and weather-resistant, antistatic
	$(R < 1 M\Omega/m)$ special NBR rubber
	compound

Temperature Range

-25 °C (-13 °F) to +80 °C (+176 °F) up to +100 °C (+212 °F) for oil

- Also suitable for water and air in general service applications
- Design Factor 3:1
- B100 compatible

Tolerances

According to UNI EN ISO 1307 Refer to Technical Handbook on page TH34

Crimp Specifications For currently qualified crimp specifications including coupling designation, refer to CrimpSource at www.parker.com/crimpsource-euro.

-Parker

Part Number			Max. Working Pressure			B Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
CARBOPRESS N/L 10							
IH30501001/100	5	12	1.0	150.0	10	0.12	40
IH30511003/100	6	12	1.0	150.0	10	0.11	50
IH30511002/100	6	13	1.0	150.0	10	0.14	50
IH30501002/100	8	15	1.0	150.0	10	0.17	65
IH30501003/100	10	17	1.0	150.0	10	0.20	80
IH30501004/100	13	20	1.0	150.0	10	0.24	105
IH30511004/100	16	23	1.0	150.0	10	0.29	130
IH30501006/40	19	27	1.0	150.0	10	0.39	150
IH30501007/50	25	35	1.0	150.0	10	0.63	200

Hose layline example

RUBBER HOSE CARBOPRESS W.P. bar

CARBURITE 10

Designed for suction and delivery of mineral oils and fuels (with aromatic content not exceeding 50 %) in road and rail tankers, service stations and refineries.

Hose Construction

Tube:	Black, smooth, NBR rubber com-
	pound, resistant to oil and fuel with
	an aromatic content not exceeding
	50 %
Reinforcement:	Synthetic textile fabrics and
	embedded steel wire helix
Cover:	Black, smooth, antistatic
	(R < 1 M Ω /m) NBR/SBR rubber
	compound, oil, fuel, abrasion,
	ageing and weather resistant

Temperature Range

-30 °C (-22 °F) to +80 °C (+176 °F) up to +100 °C (+212 °F) for oil

- Also suitable for water and air in general service applications
- Crimped solution with 48 series and Large Bore series
- Vacuum 0.8 bar (600 mm Hg)
- Design Factor 3:1

Tolerances

According to RMA steel mandrel Refer to Technical Handbook on page TH34

Crimp Specifications For currently qualified crimp specifications including coupling designation, refer to CrimpSource at www.parker.com/crimpsource-euro.

Darker

Part Number			Max. Working Pressure			B Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH36530099/40	19	29	1.0	150.0	10	0.61	120
IH36531004/40	25	35	1.0	150.0	10	0.80	150
IH36530201/40	30	40	1.0	150.0	10	0.92	180
IH36531012/40	32	42	1.0	150.0	10	0.98	190
IH36530202/40	35	45	1.0	150.0	10	1.05	210
IH36531002/40	38	48	1.0	150.0	10	1.13	240
IH36530203/40	40	50	1.0	150.0	10	1.18	240
IH36530212/40	42	52	1.0	150.0	10	1.22	252
IH36530204/40	45	55	1.0	150.0	10	1.31	270
IH36530205/40	50	60	1.0	150.0	10	1.46	300
IH36530206/40	60	71	1.0	150.0	10	1.89	360
IH36531001/40	63.5	75,5	1.0	150.0	10	2.09	380
IH36530207/20	70	82	1.0	150.0	10	2.47	420
IH36530208/20	75	87	1.0	150.0	10	2.68	450
IH36530209/20	80	92	1.0	150.0	10	2.84	480
IH36531003/20	90	104	1.0	150.0	10	3.64	540
IH36530211/20	100	114	1.0	150.0	10	4.02	600
IH36531019/20	110	124	1.0	150.0	10	4.29	660
IH36531050/10	150	170	1.0	150.0	10	7.27	900

Hose layline example

RUBBER OIL HOSE CARBURITE 10 bar

A – Oil & Fue

CARBOCORD EN 12115

According to EN 12115

Suitable for delivery of oil and fuel with an aromatic content not exceeding 50 %.

Hose Construction

nooth, NBR rubber com-
esistant to oil and fuel with
atic content not exceeding
c textile fabrics and built-in
vires to provide electrical
y between both ends.
mooth, NBR/SBR rubber
nd, antistatic (R < 1 M Ω /m),
abrasion, ageing and
resistant.

- Meets TRbF 131 Teil 2 par 5.5 (flame resistance)
- Optimal for tank truck application
- Electrical continuity guaranteed by copper wires if correctly assembled
- Design Factor 4:1

Tolerances According to EN 12115 Refer to Technical Handbook on page TH34

Temperature Range

-25 °C (-13 °F) to +80 °C (+176 °F) up to +100 °C (+212 °F) for oil

Part Number			🔉 Max	k. Working	Pressure	B Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH36522309/40	19	31	1.6	232.0	16	0.60	125
IH36522310/40	25	37	1.6	232.0	16	0.89	150
IH36522311/40	32	44	1.6	232.0	16	1.00	175
IH36522312/40	38	51	1.6	232.0	16	1.30	225
IH36522313/40	50	66	1.6	232.0	16	2.00	275
IH36522314/40	63.5	79,5	1.6	232.0	16	2.40	300

Hose layline example

CARBOCORD EN 12115 NBR 1D I.D. – PN .. – BP .. bar Ω – TRbF 131 T2 p.5.5 – Quarter/Year – Parker

CHEMIOEL EN 12115

According to EN 12115

Designed for suction and delivery of mineral oils and fuels with an aromatic content not exceeding 50 %.

Hose Construction

Tube:Black, smooth, NBR rubber compound, resistant to oil and fuel with
an aromatic content not exceeding
50 %Reinforcement:Synthetic textile fabrics, embedded
steel wire helix and built-in copper
wire to facilitate the electrical con-
nection between the hose and the
end couplingsCover:Black, smooth, NBR/SBR rubber
compound, antistatic
(R < 1 MΩ/m), oil, fuel, abrasion,
ageing and weather resistant

Temperature Range

-25 °C (-13 °F) to +80 °C (+176 °F) up to +100 °C (+212 °F) for oil

- Meets TRbF 131 Teil 2 par 5.5 (flame resistance)
- Optimal for tank truck application
- Crimped solution with 48 series and Large Bore series
- Vacuum 0.9 bar for ID up to 63.5 mm then 0.8 bar
- Design Factor 4:1

Tolerances

According to EN 12115 Refer to Technical Handbook on page TH34

Crimp Specifications For currently qualified crimp specifications including coupling designation, refer to CrimpSource at www.parker.com/ crimpsource-euro.

Part Number			Max. Working Pressure			Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH36530229/40	19	31	1.6	232.0	16	0.70	125
IH36530230/40	25	37	1.6	232.0	16	0.90	150
IH36530231/40	32	44	1.6	232.0	16	1.20	175
IH36530232/40	38	51	1.6	232.0	16	1.50	225
IH36530233/40	50	66	1.6	232.0	16	2.30	275
IH36530234/40	63.5	79,5	1.6	232.0	16	2.80	300
IH36530235/40	75	91	1.6	232.0	16	3.30	350
IH36530236/20	100	116	1.2	180.0	12	4.70	450

Hose layline example

CERVINO EN 12115

According to EN 12115

Suction and delivery of mineral oils and fuels, with an aromatic content not exceeding 50 %. The special compounds make the hose specially indicated for outdoor applications, when low temperature conditions are implicated.

Hose Construction

- Tube:Black, smooth, NBR rubber compound, resistant to oil and fuel with
an aromatic content not exceeding
50 %
- Reinforcement: Synthetic textile fabrics, embedded steel wire helix and built-in copper wire to facilitate the electrical connection between the hose and the end couplings

Cover: Black, smooth, abrasion resistance NBR/SBR rubber compound, antistatic ($R < 1 M\Omega/m$), oil, fuel, low temperature, ageing and weather resistant

- Technology nitrogen tested for safe air applications
- Cold bend tested as per ISO 4672 without cracks
- Good result on cover abrasion test as per ISO 6945
- Crimped solution with 48 series and Large Bore series
- Vacuum 0.8 bar (600 mm Hg)
- Design Factor 4:1

Temperature Range

-40 °C (-40 °F) to +80 °C (+176 °F) up to +100 °C (+212 °F) for oil

Tolerances

According to EN 12115Refer to Technical Handbook on page TH34

Crimp Specifications

For currently qualified crimp specifications including coupling designation, refer to CrimpSource at www.parker.com/

Part Number	I.D. (mm)	O.D. (mm)	Max MPa	k. Working		Weight kg/m	min. Bend Radius mm
IH36530430/40	50	66	1.6	232.0	16	2.30	200
IH36530431/40	63.5	79,5	1.6	232.0	16	2.80	250

Hose layline example

E-Z FORM™ HT

Parker Global Product

Extremely flexible, lightweight, high temperature petroleum-based oil suction/return hose designed to resist cracking and deterioration for the extreme heat generated in Tier IV engine. It may also be used in non-SAE power steering applications (as a low pressure return line only). The lightweight Greek corrugated hose construction incorporates a wire helix that provides full suction capability. The unique corrugations are tightly pitched and precisionengineered, providing extreme flexibility compared to the traditional rounded corrugation profile. The cover is resistant to high temperature oil in high temperature environments.

Hose Construction

Tube:	Black CPE			
Reinforcement:	Multiple textile braids with helix			
Cover:	Black Hydrogenate NBR, Greek			
	corrugated finish			

-Parker SERIES 7399

- Saves time and costs thanks to easy and quick assembly
- Superior kink resistance, minimal force to bend, outstanding flexibility
- In buses, cranes, trucks and mobile/heavy duty off-road equipment
- Design Factor 4:1
- Vacuum: 0,9 bar

Temperature Range

-40 °C (-40 °F) to +150 °C (+302 °F)

Tolerances

According to UNI EN ISO 1307 Refer to Technical Handbook on page TH34

Crimp Specifications

For currently qualified crimp specifications including coupling designation, refer to CrimpSource at www.parker.com/crimpsource-euro.

Part Number			Max. Working Pressure			Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
7399-0500025	12.7	23.8	1.0	150	10	0.43	23
7399-0625025	15.9	27.0	1.0	150	10	0.54	33
7399-0750025	19.1	30.0	1.0	150	10	0.56	36
7399-0875025	22.2	32.8	1.0	150	10	0.61	36
7399-1000025	25.4	36.0	1.0	150	10	0.66	36

coils of 7.62 m (25 feet)

Hose layline example

SERIES 7399 E-Z FORM HT HOSE (ID) 150 PSI MAX WP MADE IN USA

Automotive & Boat

ENGINEERING YOUR SUCCESS.

B – Automotive & Boat

Hose	ID Range (mm)	Temp. Range (°C)	Application
RADIOR 10	7 - 15	-30 / +100	cooling line system
E-Z FORM™ GS	12.7 - 102	-45 / +125	high flexible hose for coolant line system
RADIOR DIN 6	10 - 50	-40 / +125	cooling line system
Series 6722	6 - 25	-54 / +177	Heater and cooling line system
AIRBRAKE DIN 74310	9 - 13	-40 / +70	breaking system
Series 395 SAE J 30R7	4.8 - 12.7	-40 / +125	car & motorbike fuel system
TBSE	4 - 10	-30 / +100	car & motorbike fuel system
ТВЕ	3 - 7.5	-20 / +90	car & motorbike fuel system
CARBOBLUE N/L 20	6 - 25	-40 / +100	nox reducing system
WAVEMASTER™	6.3 - 19	-29 / +100	marine barrier fuel hose
SUPER-FLEX [®] FL-7	4.7 - 19.1	-40 / +125	low permation fuel hose
SUPER-FLEX [®] FL	4.7 - 15.9	-30 / +125	low permation fuel hose

Tube	Reinforce- ment	Cover	WP (bar)	Design Factor	Suction	Industry standard	Page
EPDM	textile	EPDM	10	3			B4
EPDM	textile	EPDM	5	4	yes	SAE J 20R2 - D1	B5
EPDM	textile	EPDM	6	3			B6
SILICONE	textile	SILICONE	5.7	3		SAE J20R3 Class A	B7
EPDM	textile	EPDM	10	4		DIN 74310	B8
NBR	textile	CR	2.4 5.2	5		SAE 30 R7	B9
NBR	textile	NBR	10	3			B10
NBR	textile		10	3			B11
EPDM	textile	EPDM	20	3			B12
NYLON	textile	NBR/PVC	7	4	light	Refer to the page	B13
NBR/THV	textile	CPE	6.9	5	light	SAEJ30R7/J30R14T2	B14
NBR/ barrier	textile	CPE	6.9	5	light	AEJ30R7/J30R14T2	B15

RADIOR 10

Flexible rubber hose for delivery of hot water in heating and cooling of automotive LPG and methane systems.

Hose Construction

Tube:	Black, smooth EPDM nitrosamine
	free rubber compound
Reinforcement:	Synthetic textile yarns
Cover:	Smooth, black, heat, ageing and
	weather-resistant EPDM nitrosa-
	mine free rubber compound

Temperature Range

-30 °C (-22 °F) to + 100 °C (+212 °F) with peaks +120 °C (+248 °F)

Tolerances

According to UNI EN ISO 1307 Refer to Technical Handbook on page TH34

Crimp Specifications

For currently qualified crimp specifications including coupling designation, refer to CrimpSource at www.parker.com/crimpsource-euro.

Part Number			S Max	k. Working	Pressure	B Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH30114029/100	7	13	1.0	150.0	10	0.13	50
IH30114030/100	15	23	1.0	150.0	10	0.35	90

Hose layline example

RUBBER HOSE RADIOR 10 bar I.D. mm

E-Z FORM™ GS

Designed to handle air, coolant, mild chemicals and water. Extremely flexible, lightweight provides full suction capability and a path to conduct a static electrical charge to ground. The unique Greek cover corrugations provides minimal forceto-bend, superior kink resistance, and maximum flexibility for ease of handling, used where formed hose might normally be required.

Hose Construction

Tube:	Black EPDM, antistatic rubber
	compound
Reinforcement:	Multiple textile plies with wire helix
Cover:	Black EPDM rubber compound
	resistant to weathering, greek
	corrugated finish

Temperature Range

-45 °C (-50 °F) to +125 °C (+257 °F)

- Premium grade high temperature EPDM materials
- Saves time and costs thanks to easy and quick assembly
- Superior kink resistance, minimal force to bend, outstanding flexibility
- Performance equal to SAE J20R2-D1
- Design Factor 4:1
- Vacuum: 0.9 bar

Tolerances

According to UNI EN ISO 1307 Refer to Technical Handbook on page TH34

Crimp Specifications

For currently qualified crimp specifications including coupling designation, refer to CrimpSource at www.parker.com/ crimpsource-euro.

Part Number			🔉 Max	k. Working	Pressure	B Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH73950500/10	12.7	23.8	0.5	75	5	0.4	23
IH73950625/10	15.9	27	0.5	75	5	0.49	33
IH73950750/10	19.1	30	0.5	75	5	0.52	36
IH73951000/10	25.4	36	0.5	75	5	0.61	36
IH73951125/10	29	38	0.5	75	5	0.62	46
IH73951250/10	32	43	0.5	75	5	0.75	56
IH73951375/10	35	46	0.5	75	5	0.79	71
IH73951500/10	38	49	0.5	75	5	0.85	74
IH73952000/10	51	63	0.5	75	5	1.44	117
IH73952250/10	57	70	0.5	75	5	1.61	165
IH73952375/10	60	73	0.5	75	5	1.64	175
IH73952500/10	63.5	76.5	0.5	75	5	1.74	183
IH73953000/10	76	90	0.5	75	5	2.23	223
IH73954000/10	102	116	0.5	75	5	3.28	340

Hose layline example

SERIES 7395 E-Z FORM GS HOSE 75 PSI MAX WP

RADIOR DIN 6 (COILS)

Designed for cooling systems of automotive engines and stationary engines and for refrigerant systems.

Hose Construction

Tube:	Black, smooth, antistatic, heat
	resistant EPDM rubber compound
	according to DIN 73411 - 1996*
Reinforcement:	Synthetic textile fabrics yarns
Cover:	Black, smooth, wrapped finish,
	heat, ageing and weather-resistant
	EPDM rubber compound
	according to DIN 73411 - 1996*

*The tube and the cover compounds are according to DIN 73411 - 1996 in the following principal areas: tensile, strength, density, hardness, laceration, swellings, aging and dry residue.

Temperature Range

-40 °C (-40 °F) to +125 °C (+257 °F) with peaks to +140 °C (+284 °F)

- Performances fully compliant to DIN73411
- Compounds according to DIN 73411 for: tensile, strength, density, hardness, laceration, swellings, aging and dry residue
- Specific for cooling system at high temperature
- For Automotive and general industries application
- Design Factor 3:1
- Available on request in Cut Lenght of 1 m

Tolerances

$I.D. \leq 25 \text{ mm}$

according to UNI EN ISO 1307

I.D. > 25 mm

according to RMA steel mandrel Refer to Technical Handbook on page TH34

Part Number			S Max	k. Working	Pressure	B Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH30836101/40	10	17	0.6	90.0	6.0	0.17	-
IH30836103/40	13	20	0.6	90.0	6.0	0.21	-
IH30836104/40	15	22	0.6	90.0	6.0	0.23	-
IH30836105/40	16	23	0.6	90.0	6.0	0.25	-
IH30836106/40	18	25	0.6	90.0	6.0	0.27	-
IH30836107/40	20	27	0.6	90.0	6.0	0.30	-
IH30836108/40	22	29	0.6	90.0	6.0	0.33	-
IH30836109/40	25	34	0.6	90.0	6.0	0.48	-
IH36836110/40	28	36	0.6	90.0	6.0	0.52	-
IH36836111/40	30	38	0.6	90.0	6.0	0.55	-
IH36836112/40	32	40	0.6	90.0	6.0	0.58	-
IH36836113/40	35	43	0.6	90.0	6.0	0.63	-
IH36836114/40	38	48	0.6	90.0	6.0	0.88	-
IH36836115/40	40	50	0.6	90.0	6.0	0.92	-
IH36836116/40	42	52	0.6	90.0	6.0	0.96	-
IH36836119/40	50	60	0.6	90.0	6.0	1.11	-

Hose layline example

RADIOR DIN – A – I.D. x TH – EPDM / P / EPDM – 6 bar – 125°C – Parker (yellow ink x LL and yellow embossed x MM) Y/W (with traceability code)

SERIES 6722

Parker Global Product

Extruded heater hose that meets or exceeds SAEJ20R3 Class A specifications. This product is utilized as standard equipment on trucks, cars and buses. Since this product is extruded it can be offered in long lengths, which saves money by reducing scrap. These hoses are resistant to coolant solutions, cracking, ozone, cold leaks, peeling and aging.

Hose Construction

Tube:	Brick Red Silicone rubber com-
	pound, heat and cold resistant
Reinforcement:	High-temperature-resistant plies
Cover:	Blue, Silicone rubber resistant to
	weathering, ozone and cracking

Temperature Range

-54 °C (-65 °F) to +177 °C (+350 °F)

-Parker SERIES 6722

- Specific for Heater and Cooling system on cars, trucks and buses
- For Automotive and general industries application
- According to SAE J20R3 Class A and SAE J2387
- Design Factor 3:1
- Peroxide curing

Tolerances

According to UNI EN ISO 1307 Refer to Technical Handbook on page TH34

Part Number			S Ma	k. Working	Pressure	B Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
6722-0250050	6	13	0.57	83	5.7	0.150	13
6722-0375050	10	18	0.57	83	5.7	0.196	19
6722-0500050	13	21	0.57	83	5.7	0.251	38
6722-0625050	16	24	0.57	83	5.7	0.357	44
6722-0750050	19	27	0.46	67	4.6	0.385	70
6722-1000050	25	34	0.40	58	4.0	0.506	127

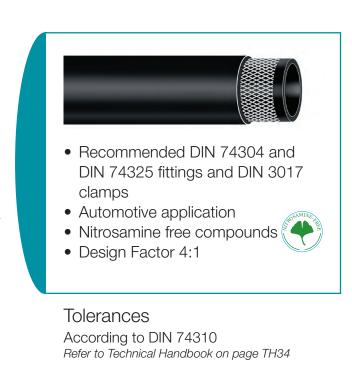
coils of 15.24 m (50 feet)

Hose layline example

PARKER SILICONE SERIES 6722 -65 °F to +350 °F (DATE CODE)

AIRBRAKE DIN 74310

According to DIN 74310 Parker Global Product


Widely used in automotive air brake systems.

Hose Construction

Tube:	Black, smooth EPDM nitrosamine
	free rubber compound
Reinforcement:	Stress-resistant, synthetic textile
	yarns
Cover:	Black, abrasion, ageing and weath-
	er-resistant, smooth EPDM nitrosa-
	mine free rubber compound

Temperature Range

-40 °C (-40 °F) to + 70 °C (+158 °F)

Part Number			Max. Working Pressure			B Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH30315103/40	9	16	1.0	150.0	10	0.19	65
IH30315116/40	11	18	1.0	150.0	10	0.22	70
IH30315115/40	13	25	1.0	150.0	10	0.49	100

Hose layline example

-Parker I.D. mm DIN 74310 – Year/Quarter with traceability code

<u>B – Automotive & Boat</u>

SERIES 395 SAE J30R7

Parker Global Product

Series 395 is a fuel line/vapor emission hose for refined fuels such as biodiesel (to B20 in dedicated and non-dedicated service), diesel, ethanol and gasoline. The hose is flexible for easy routing in and around small engines and small engine compartments, and the cover is resistant to abrasion, oil and weathering.

Hose Construction

Tube:Black nitrileReinforcement:Multiple textile pliesCover:Black chloroprene; smooth finish

Temperature Range

-40 °C (-40 °F) to +125 °C (+257 °F)

- Low pressure fuel lines, vapor emission service
- B20, diesel, ethanol, gasoline
- Agricultural equipment, autos, buses, construction equipment, off-road equipment
- Design factor 5:1

Tolerances

According to SAE J30 R7 Refer to Technical Handbook on page TH34

Part Number			Max. Working Pressure			B Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
39553	4.8	10.3	0.52	75	5.2	0.100	50.8
39550	6.4	12.7	0.34	50	3.4	0.164	50.8
39551	7.9	14.3	0.34	50	3.4	0.166	76.2
39552	9.5	15.9	0.34	50	3.4	0.200	88.9
39554	12.7	19.8	0.24	35	2.4	0.260	101.6

Supplied in reels of 250 feet each (76.2 m), with max 2 lengths at least 25 feet (7.62 m) long

Hose layline example

(ID) FUEL/VAPOR LINE SAE J30R7 (DATE CODE)

TBSE

Designed for general applications in fuel systems where low permeability levels are required. Suitable for leaded and unleaded fuels and diesel.

Hose Construction

Tube:	Black, oil and fuel resistant, smooth,
	antistatic, NBR
	rubber compound
Reinforcement:	Synthetic textile yarns
Cover:	Black, oil, fuel, abrasion, weather-
	resistant, smooth, antistatic,
	NBR rubber compound

Temperature Range

-30 °C (-22 °F) to +100 °C (+212 °F)

- Antistatic cover and tube compounds
- Low permeability
- Suitable for B100 and E100 up to 70 °C
- Available packaging in reels for display stand
- Design Factor 3:1

Tolerances

According to UNI EN ISO 1307 Refer to Technical Handbook on page TH34

Part Number			S Ma	x. Working	Pressure	Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
Coils							
IH30871001/100	4	9	1.0	150.0	10	0.07	30
IH30871011/100	5	10	1.0	150.0	10	0.08	40
IH30871021/100	6	13	1.0	150.0	10	0.14	55
IH30871031/100	7	13	1.0	150.0	10	0.13	55
IH30871041/100	7.5	14	1.0	150.0	10	0.15	65
IH30871051/100	10	16	1.0	150.0	10	0.17	75
Reels							
IH30871001/15-R90*	4	9	1.0	150.0	10	0.07	30
IH30871011/15-R90*	5	10	1.0	150.0	10	0.08	40
IH30871021/15-R90*	6	13	1.0	150.0	10	0.14	55
IH30871031/15-R90*	7	13	1.0	150.0	10	0.13	55
IH30871041/15-R90*	7.5	14	1.0	150.0	10	0.15	65
IH30871051/10-R60**	10	16	1.0	150.0	10	0.17	75

* box quantity = 6 x 15 m (reels)

** box quantity = 6 x 10 m (reels)

Hose layline example

TBE

Tube:

Designed for particular applications in fuel systems where textile cover is requested. Suitable for leaded and unleaded fuels and diesel.

Hose Construction

Black, oil and fuel resistant, smooth NBR rubber compound

Reinforcement/

Cover: High tensile polyester textile overbraid, resistant to abrasion, fuel, oil and weathering

Temperature Range

-20 °C (-4 °F) to +90 °C (+194 °F)

- Available in reels only
- Suitable for B20 and E100 up to 70 °C
- Designed for motorbike fuel supply
- Design Factor 3:1

Tolerances

On inside diameter:	+ 0 / - 0.5 mm
Length tolerance:	±1%

Part Number			Max. Working Pressure			B Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH11001300/15-R90*	3	7	1.0	150.0	10	0.04	30
IH11001345/15-R90*	7.5	14.5	1.0	150.0	10	0.13	65

B11

CARBOBLUE N/L 20

Parker Global Product

Carboblue is specially designed for applications where there is a requirement for extracting NOx (nitrogen oxide and its mixtures that emit polluted substances into the environment during air combustion) and dramatically reducing exhaust gas from diesel engines. These objectives are included in European parameters EURO IV, EURO V and EURO VI.

Hose Construction

Tube:Black, smooth, antistatic
 $(R < 1 M\Omega/m)$ and sulphur free
EPDM rubber compound nitrosa-
mine free with peroxide curing.

Extensive tests on tensile stress, cold bending, heat, and laceration resistance on compound in contact with the additive did not show alteration of its state.

Reinforcement:Synthetic textile fabricsCover:Black, smooth, antistatic
 $(R < 1 M\Omega/m)$, EPDM rubber compound nitrosamine free, ageing,
heat and weather resistant

Temperature Range

-40 °C (-40 °F) +100 °C (+212 °F) with peaks up to +120 °C (+248 °C)

Tolerances

According to UNI EN ISO 1307 Refer to Technical Handbook on page TH34

Crimp Specifications

-Parker

For currently qualified crimp specifications including coupling designation, refer to CrimpSource at www.parker.com/ crimpsource-euro.

Part Number			Max. Working Pressure			Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH30515043/100	6	12	2.0	300.0	20	0.11	40
IH30515044/100	8	15	2.0	300.0	20	0.16	50
IH30515045/100	10	17	2.0	300.0	20	0.19	60
IH30515046/100	13	20	2.0	300.0	20	0.23	80
IH30515040/80	16	26	2.0	300.0	20	0.43	100
IH30515041/80	19	30	2.0	300.0	20	0.56	115
IH30515047/50	25	37	2.0	300.0	20	0.76	150

Hose layline example

RUBBER HOSE CARBOBLUE W.P. bar

B – Automotive & Boat

WAVEMASTERTM

Parker Global Product

Premium low permeation fuel tank feed and vent hose for refined fuels such as biodiesel, alcohol blended fuels, diesel, ethanol and gasoline. Specially designed for marine applications. The hose incorporates a thermoplastic barrier to resist fuel permeation and the cover is resistant to abrasion, oil and weathering.

Hose Construction

Tube:	Translucent Nylon insulating
Reinforcement:	Multiple textile plies
Cover:	Black nitrile/PVC; smooth finish
	insulating

Temperature Range -29 °C (-20 °F) to +100 °C (+212 °F) -Parker SERIES 7165

- Meets or exceeds EN ISO 7840:2013 A1, ABYC, CARB, CE, EPA, NMMA, SAE J1527 A1-15, USCG A1
- Flexible for easy routing in engine compartments
- Ideal for feed line to fuel tanks where liquid fuel is continuously in the hose under normal conditions
- Biodiesel up to B100 and E85
- Design Factor 4:1
- Vacuum: 0.35 bar

Tolerances

According to EN ISO 7840 Refer to Technical Handbook on page TH34

Part Number			Max. Working Pressure			Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
7165-25250	6.3	13.6	0.7	100	7.0	0.16	63.5
7165-31250	7.9	15.5	0.7	100	7.0	0.20	63.5
7165-38250	9.5	17.3	0.7	100	7.0	0.23	63.5
7165-50250	12.7	20.9	0.7	100	7.0	0.30	114.3
7165-63250	16.0	25.4	0.52	75	5.2	0.46	114.3
7165-75250	19.0	28.6	0.52	75	5.2	0.51	114.3

*supplied in reels of 76.2 m (250 feet) with max 2 lengths at least 15.24 m (50 feet) long

Hose layline example

-Parker PARKER WAVEMASTER SERIES 7165 MARINE FUEL HOSE - EPA *PKHPLINE165 - CARB RM-17-006 SAE J1527 USCG TYPE A1-15 ISO 7840 A1

SUPER-FLEX® FL-7

Parker Global Product

Fuel line/vapor emission hose for refined fuels such as biodiesel, diesel, ethanol and gasoline. The hose incorporates a THV barrier to resist permeation, multiple aramid plies of reinforcement for coupling retention, durability and kink resistance, the cover is resistant to abrasion, oil and weathering. The hose is flexible for easy routing in and around small engines and small engine compartments. Permeation value less than 15g/m²/day.

Hose Construction

Tube:	Black nitrile and translucent
	THV barrier, non conductive
Reinforcement:	Multiple aramid plies
Cover:	Black CPE, smooth finish

Temperature Range

-40 °C (-40 °F) to +125 °C (+ 257 °F)

Parker SERIES 389
Meets CARB 2006 SORE, EPA, SAE J30R7, SAE J30R14T2
for blowers, grinders, mowers, offroad

- for blowers, grinders, mowers, oilroad engines, pressure washers, saws, agricultural, buses, construction
- Biodiesel up to B20
- Design Factor 5:1
- Vacuum 0.81 bar for ID up to 9.8 mm then 0.34 bar

Tolerances

According to UNI EN ISO 1307 Refer to Technical Handbook on page TH34

Crimp Specifications

For currently qualified crimp specifications including coupling designation, refer to CrimpSource at www.parker.com/ crimpsource-euro.

Part Number			S Max	k. Working	Pressure	Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
38903	4.8	10.3	0.69	100	6.9	0.10	33.0
38904	6.4	12.7	0.69	100	6.9	0.13	38.1
38905	7.9	14.3	0.69	100	6.9	0.16	50.8
38906	9.8	15.8	0.69	100	6.9	0.16	63.5
38908	12.7	19.8	0.69	100	6.9	0.26	101.6
38910	15.9	23.9	0.69	100	6.9	0.36	127.0
38912	19.1	28.6	0.69	100	6.9	0.52	152.4

Supplied in reels of 250 feet each (76.2 m), with max 2 lengths at least 25 feet (7.62 m) long

Hose layline example

-Parker SERIES 389 SUPER-FLEX® FL-7 (ID) SAE J30R7/R14T2 FUEL LINE (x)PKHPLINE389 EPA COMPLIANT 15 g/m2/day CARB Q-08-013

<u> B – Automotive & Boat</u>

SUPER-FLEX® FL

Parker Global Product

Fuel line/vapor emission hose for refined fuels such as diesel, ethanol and gasoline. The hose incorporates a thermoplastic barrier to resist permeation and the cover is resistant to abrasion, oil and weathering. The hose is flexible for easy routing in and around small engines and small engine compartments. Permeation value less than 15g/m²/day.

Hose Construction

Tube:	Black nitrile and translucent			
	thermoplastic barrier,			
	non conductive			
Reinforcement:	One textile braid or multiple			
	textile plies			
Cover:	Black CPE, smooth finish			

Temperature Range

-30 °C (-34 °F) to +125 °C (+ 257 °F)

Parler SERIES 397

- Meets CARB 2006 SORE, EPA, SAE J30R7/J30R14T2 (Performance)
- for blowers, grinders, mowers, offroad engines, pressure washers, saws, agricultural, autos, buses
- Biodiesel up to B100
- Design Factor 5:1
- Vacuum 0.81 bar for ID up to 9.5 mm then 0.34 bar

Tolerances

According to UNI EN ISO 1307 Refer to Technical Handbook on page TH34

Crimp Specifications

For currently qualified crimp specifications including coupling designation, refer to CrimpSource at www.parker.com/ crimpsource-euro.

Part Number			Max. Working Pressure			Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
39703	4.7	11.1	0.69	100	6.9	0.10	33.0
39704	6.4	12.7	0.69	100	6.9	0.13	38.1
39705	7.9	14.2	0.69	100	6.9	0.16	50.8
39706	9.5	15.9	0.69	100	6.9	0.16	63.5
39708	12.7	17.7	0.69	100	6.9	0.26	101.6
39710	15.9	23.9	0.24	35	2.4	0.33	127.0

Supplied in reels of 250 feet each (76.2 m), with max 3 lengths at least 25 feet (7.62 m) long

Hose layline example

-Parker SERIES 397 (P/N) SUPER-FLEX® FL (ID) LOW PERMEATION FUEL LINE CARB (x) PKHPLINE397 EPA COMPLIANT 15 g/m2/day C-U

Gas

ENGINEERING YOUR SUCCESS.

C – Gas

Hose	ID Range (mm)	Temp. Range (°C)	Application
AUTOGENE EN ISO 3821 NR/L - NB/L 20	6.3 - 10	-25 / +80	welding process
PROPANPRESS EN ISO 3821 NA/L 20	6.3 - 10	-30 / +70	propan gas delivery
CARBO G NY/L 10	8 - 13	-20 / +90	household applicances

Gas

Tube	Reinforce- ment	Cover	WP (bar)	Design Factor	Suction	Industry standard	Page
EPDM/ SBR	textile	EPDM	20	3		EN ISO 3821	C4
NBR/NR	textile	EPDM	20	3		EN ISO 3821	C5
NBR	textile	EPDM	10	3		UNI CIG 7140	C6

AUTOGENE EN ISO 3821 NR/L - NB/L 20

According to EN ISO 3821

Designed for delivery of welding and allied process gases.

Hose Construction

Tube:	Black, smooth EPDM rubber com- pound resistant to Acetylene gas (Red cover). Black, smooth EPDM/ SBR rubber compound resistant to Oxygen gas (Blue cover). Not suitable for LPG, good resistance to
Reinforcement: Cover:	ignition (Red and Blue) Synthetic textile yarns Smooth and pin pricked, red (NR) or blue (NB) EPDM rubber com- pound resistant to abrasion, age- ing hot surfaces and incandescent particles

- For welding in industrial and domestic application
- Colored cover following specs indication: Red for Acetylene and Blue for Oxygen
- Exceeds the standard on backfire test
- Excellent flexibility
- Design Factor 3:1

Tolerances

According to EN ISO 3821 Refer to Technical Handbook on page TH34

Temperature	Range
-------------	-------

-25 °C (-13 °F) to +80 °C (+176 °F)

Part Number			Max. Working Pressure			Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
AUTOGENE EN ISO 3821 NR/L 20							
IH30412803/40	6.3	13.3	2.0	300.0	20	0.15	40
IH30412914/100	8	15	2.0	300.0	20	0.17	40
IH30412716/40	9	16	2.0	300.0	20	0.19	45
IH30412716/100	9	16	2.0	300.0	20	0.19	45
IH30413221/40	10	17	2.0	300.0	20	0.20	50
AUTOGENE EN ISO 3	821 NB/L 20						
IH30412703/40	6.3	13.3	2.0	300.0	20	0.15	40
IH30412915/100	8	15	2.0	300.0	20	0.17	40
IH30412707/40	9	16	2.0	300.0	20	0.22	50
IH30412707/100	9	16	2.0	300.0	20	0.22	50
IH30413220/40	10	17	2.0	300.0	20	0.24	50

IMPORTANT!

Welding applications can be hazardous. Please take all the necessary safety precautions.

Hose layline example

RUBBER HOSE – EN ISO 3821 – 2 MPa (20 bar) – I.D.	(Year with traceability code)	 мсхх
RUBBER HOSE – EN ISO 3821 – 2 MPa (20 bar) – I.D.	(Year with traceability code)	 мсхх

PROPANPRESS EN ISO 3821 NA/L 20

According to EN ISO 3821

Suitable for LPG in industrial applications.

Hose Construction					
Tube:	Black, LPG resistant smooth NBR/				
	NR rubber compound				
Reinforcement:	Synthetic textile yarns				
Cover:	Orange, smooth EPDM rubber				
	compound resistant to ageing and				
	weathering, pin-pricked cover to				
	prevent blisters during use				

Temperature Range

-30 °C (-22 °F) to +70 °C (+158 °F)

- Orange cover following specs indication
- Flexible hose for easy handling
- Design Factor 3:1

Tolerances According to EN ISO 3821 Refer to Technical Handbook on page TH34

Part Number						Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH30413456/100	6.3	13.3	2.0	300.0	20	0.16	50
IH30413457/100	8	15	2.0	300.0	20	0.18	65
IH30413459/100	8.5	16	2.0	300.0	20	0.21	70
IH30413458/100	10	17	2.0	300.0	20	0.22	80

Hose layline example

RUBBER HOSE PROPANPRESS EN ISO 3821 - 2MPa (20 bar) - I.D. (Year with the traceability code) — Parker

мсхх

CARBO G NY/L 10

According to UNI 7140

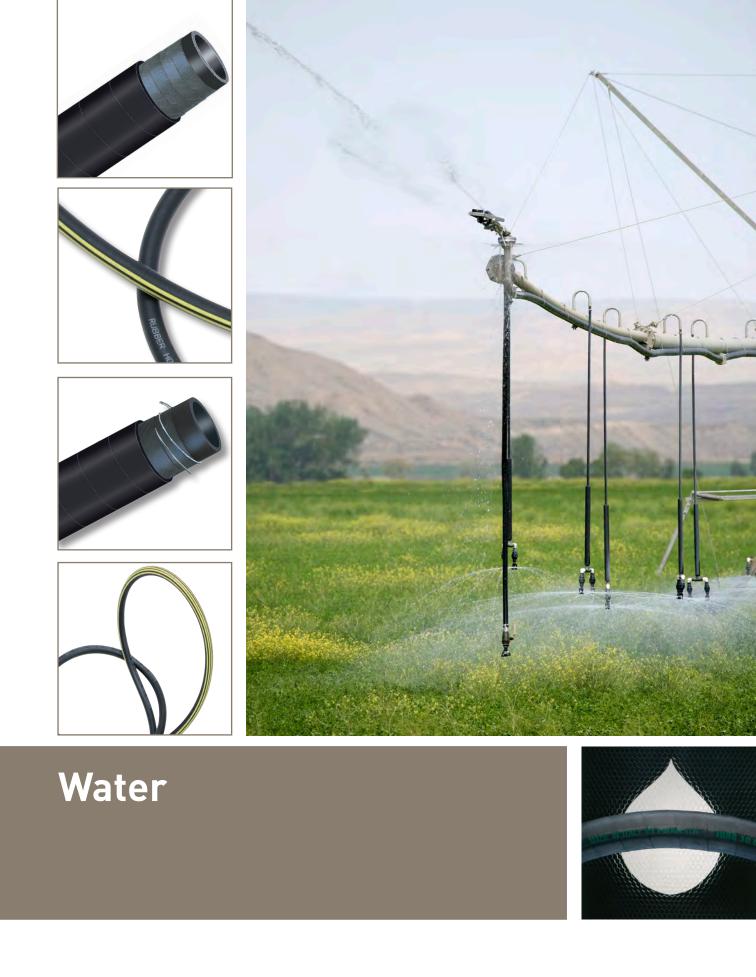
Connection of household appliances to the gas line or to LPG bottles.

Hose Construction

Tube:	Black, smooth NBR rubber com-
	pound, suitable for Domestic Gas
Reinforcement:	Synthetic textile yarns
Cover:	Yellow, ageing-resistant, smooth (/L)
	EPDM rubber compound

Temperature Range -30 °C (-22 °F) to +90 °C (+194 °F)

- Quarterly tested by IMQ (Italian Institute of Quality Approval)
- Low permeability
- Superior tensile strength
- Design Factor 3:1


Tolerances According to UNI 7140 Refer to Technical Handbook on page TH34

Part Number						B Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH30551595/50	8	13	1.0	150.0	10	0.145	45
IH30551601/50	13	20	1.0	150.0	10	0.310	70

Hose layline example

CARBO/G UNI 7140 – CL1 – TIPO A1 – DN8 – 0,2 bar – IMQ-CIG – da sostituire entro il 2028 – Parker MC20

ENGINEERING YOUR SUCCESS.

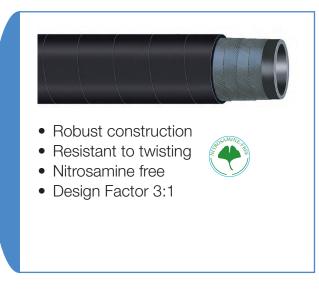
D – Water

Hose	ID Range (mm)	Temp. Range (°C)	Application
IDRO 10	25 - 60	-30 / +80	water, non aggressive liquids
BEVERA 10	19 - 125	-30 / +80	water, non aggressive liquids

Water

 \approx

Tube	Reinforce- ment	Cover	WP (bar)	Design Factor	Suction	Industry standard	Page
SBR	textile	SBR	10	3			D4
SBR	textile	SBR	10	3	yes		D5


IDRO 10

Suitable for discharge of water and nonaggressive liquids, for agricultural uses, also in industrial facilities and on building sites.

Hose Construction

Tube:	Black, smooth SBR nitrosamine free
	rubber compound
Reinforcement:	Synthetic textile fabrics
Cover:	Black: abrasion, ageing and
	weather-resistant SBR nitrosamine
	free rubber compound

Temperature Range -30 °C (-22 °F) to +80 °C (+176 °F)

Tolerances

According to RMA steel mandrel Refer to Technical Handbook on page TH34

Part Number			S Max	k. Working	Pressure	Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH36203000/40	25	34	1.0	150.0	10	0.63	250
IH36203002/40	30	41	1.0	150.0	10	0.92	300
IH36203003/40	32	44	1.0	150.0	10	1.07	320
IH36203005/40	38	52	1.0	150.0	10	1.46	380
IH36203006/40	40	54	1.0	150.0	10	1.52	400
IH36203011/40	60	82	1.0	150.0	10	3.63	600

Hose layline example

BEVERA 10

Suction and delivery of water and non-aggressive liquids. It is recommended for loading and discharge of storage tanks, tankers, for irrigation and for all applications where a flexible and easy to handle hose is required.

Hose Construction

Tube:	Black, smooth SBR nitrosamine free
Reinforcement:	rubber compound Synthetic textile fabrics and
	embedded steel wire helix
Cover:	Black, abrasion, ageing and weather-resistant SBR nitrosamine free rubber compound

Temperature Range

-30 °C (-22° F) to +80 °C (+176 °F)

- Robust construction
- Resistant to twisting
- Nitrosamine free
- Vacuum 0.8 bar (600 mm Hg)
- Suitable for air up to 70 °C
- Design Factor 3:1

Tolerances

According to RMA steel mandrel Refer to Technical Handbook on page TH34

Parker

Crimp Specifications

For currently qualified crimp specifications including coupling designation, refer to CrimpSource at www.parker.com/ crimpsource-euro.

Part Number			S Max	x. Working	Pressure	B Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH36214045/40	19	29	1.0	150.0	10	0.67	110
IH36214050/40	25	35	1.0	150.0	10	0.83	150
IH36214052/40	32	42	1.0	150.0	10	1.01	190
IH36214054/40	38	48	1.0	150.0	10	1.16	230
IH36214055/40	40	50	1.0	150.0	10	1.21	240
IH36214058/40	50	60	1.0	150.0	10	1.50	300
IH36214060/40	60	71	1.0	150.0	10	1.94	360
IH36214063/20	70	81.5	1.0	150.0	10	2.59	420
IH36214064/20	75	86.5	1.0	150.0	10	2.75	450
IH36214066/20	80	92.5	1.0	150.0	10	3.02	480
IH36214067/20	90	103.5	1.0	150.0	10	3.66	540
IH36214068/20	100	114	1.0	150.0	10	3.98	600
IH36211010/20	125	140	1.0	150.0	10	5.66	750

Hose layline example

RUBBER WATER HOSE BEVERA W.P. bar

Hot Water & Steam

ENGINEERING YOUR SUCCESS.

E – Hot Water & Steam

Hose	ID Range (mm)	Temp. Range (°C)	Application
RADIOR 3	10 - 100	-40 / +100	cooling line system
RADIOR K 1003	12 - 50	-40 / +50	cooling line system
THERMOPRESS 10	12 - 40	-40 / +40	cooling line and hot water
VIGOR 2 EN ISO 6134 Type 2/A	13 - 51	-40 / +210	steam industrial application

WARNING!

Steam hoses gradually decrease in performance during service life. Consequently, they need to be regularly inspected by trained personnel wearing adequate protective overalls, including eye protection. Cuts and gouges in the hose cover showing the textile reinforcement. Steam leaks.Permanent deformation of hose. Reduction of steam flow. WHEN ONE OF THESE ABNORMALITIES OCCURS, THE HOSE SHOULD BE REMOVED FROM SERVICE AND INSPECTED. If a failure occurs close to the couplings, the damaged hose can be cut, reconnected and used as before.

Use only couplings with safety clamps. Follow the coupling manufacturer's instructions for coupling procedures. Check coupling tightness each time before use. Drain after use. When not in use, store the hose on a flat surface (shelves) and never hang from a hook.

Tube	Reinforce- ment	Cover	WP (bar)	Design Factor	Suction	Industry standard	Page
EPDM	textile	EPDM	3	3			E4-E5
NBR	textile	CR	5	3			E6
EPDM	textile	EPDM	10	4			E7
EPDM	textile	EPDM	18	10		ENISO6134Type2/A	E8

RADIOR 3 (COIL)

Designed for cooling systems of automotive engines and stationary engines.

Hose Construction

Tube: Black, smooth, heat resistant EPDM nitrosamine free rubber compound Reinforcement: Synthetic textile yarn fabric Cover: Black, smooth, heat, ageing

and weather-resistant EPDM nitrosamine free rubber compound

Temperature Range

-40 °C (-40 °F) to peaks of +100 °C (+212 °F)

Tolerances

I.D. ≤ 22 mm according to UNI EN ISO 1307 I.D. > 22 mm according to RMA steel mandrel Refer to Technical Handbook on page TH34

Part Number			資 Max	k. Working	Pressure	B Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH36830095/40	10	16	0.3	43.5	3	0.16	-
IH36830096/40	12	18	0.3	43.5	3	0.19	-
IH36830097/40	15	21	0.3	43.5	3	0.23	-
IH36830101/40	18	24.5	0.3	43.5	3	0.29	-
IH36830102/40	20	26.5	0.3	43.5	3	0.32	-
IH36830103/40	22	28.5	0.3	43.5	3	0.34	-
IH36830104/40	25	32	0.3	43.5	3	0.39	-
IH36830105/40	28	36	0.3	43.5	3	0.50	-
IH36830106/40	30	38	0.3	43.5	3	0.53	_
IH36830107/40	32	40	0.3	43.5	3	0.55	-
IH36830108/40	35	43	0.3	43.5	3	0.60	-
IH36830109/40	38	47	0.3	43.5	3	0.73	-
IH36830110/40	40	49	0.3	43.5	3	0.77	-
IH36830111/40	42	51	0.3	43.5	3	0.80	-
IH36830112/40	45	54	0.3	43.5	3	0.85	-
IH36831023/40	48	57	0.3	43.5	3	0.91	-
IH36830113/40	50	60	0.3	43.5	3	1.07	-
IH36830114/40	55	65	0.3	43.5	3	1.17	-
IH36830115/40	60	70	0.3	43.5	3	1.26	-
IH36830116/20	65	76	0.3	43.5	3	1.54	-
IH36830117/20	70	81	0.3	43.5	3	1.65	-
IH36831022/20	75	86	0.3	43.5	3	1.75	-
IH36830118/20	80	92	0.3	43.5	3	2.05	—
IH36830119/20	90	102	0.3	43.5	3	2.29	-
IH36830120/20	100	113	0.3	43.5	3	2.63	_

Hose layline example

BER HOSE RADIOR DIAM. I.D. mm -Darker

E – Hot Water & Steam

RADIOR 3 (CUT LENGTH)

Designed for cooling systems of automotive engines and stationary engines.

Hose Construction

Tube:

Black, smooth, heat resistant EPDM nitrosamine free rubber compound Reinforcement: Synthetic textile yarn fabric Cover: Black, smooth, heat, ageing and weather-resistant EPDM

nitrosamine free rubber compound

Temperature Range

-40 °C (-40 °F) to peaks of +100 °C (+212 °F)

- Light and flexible hose
- In piece of 1 m length
- Straight piece without snake effect
- Nitrosamine free
- Design Factor 3:1

Tolerances

I.D. ≤ 22 mm according to UNI EN ISO 1307 I.D. > 22 mm according to RMA steel mandrel Refer to Technical Handbook on page TH34

Part Number			S Max	k. Working	Pressure	Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH36830005/1	28	36	0.3	43.5	3	0.50	_
IH36830006/1	30	38	0.3	43.5	3	0.53	_
IH36830007/1	32	40	0.3	43.5	3	0.55	-
IH36830008/1	35	43	0.3	43.5	3	0.60	-
IH36830009/1	38	47	0.3	43.5	3	0.73	-
IH36830010/1	40	49	0.3	43.5	3	0.77	-
IH36830011/1	42	51	0.3	43.5	3	0.80	-
IH36830012/1	45	54	0.3	43.5	3	0.85	-
IH36831030/1	48	57	0.3	43.5	3	0.91	-
IH36830013/1	50	60	0.3	43.5	3	1.07	-
IH36830014/1	55	65	0.3	43.5	3	1.17	-
IH36830015/1	60	70	0.3	43.5	3	1.26	-
IH36830016/1	65	76	0.3	43.5	3	1.54	-
IH36830017/1	70	81	0.3	43.5	3	1.65	-
IH36831031/1	75	86	0.3	43.5	3	1.75	-
IH36830018/1	80	92	0.3	43.5	3	2.05	-
IH36830019/1	90	102	0.3	43.5	3	2.29	-
IH36830020/1	100	113	0.3	43.5	3	2.63	-

Hose layline example

BER HOSE RADIOR DIAM. I.D. mm

RADIOR K 1003

Designed for heating and cooling systems, resistant to ASTM I/II/III oil up to +100 °C (+212 °F) with peaks up to +120 °C (+248 °F) and diesel fuel up to +50 °C (+122 °F).

Hose Construction

Tube:	Black, smooth, heat resistant
	NBR rubber compound
Reinforcement:	Synthetic textile fabrics yarns
Cover:	Black, smooth, wrapped finish,
	heat, ageing and weather-resistant
	CR rubber compound

Temperature Range

-40 °C (-40 °F) to +100 °C (+212 °F)

Tolerances

 $\label{eq:l.D.} I.D. \leq 22 \mbox{ mm according to UNI EN ISO 1307} \\ I.D. > 22 \mbox{ mm according to RMA steel mandrel} \\ Refer to Technical Handbook on page TH34 \\ \end{tabular}$

Part Number			Max. Working Pressure			Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH30831300/40	12	19	0.5	72.5	5	0.24	-
IH30831302/40	15	22	0.5	72.5	5	0.28	-
IH30831303/40	18	25	0.5	72.5	5	0.33	_
IH30831305/40	22	29	0.5	72.5	5	0.39	-
IH36831300/40	25	32	0.5	72.5	5	0.41	_
IH36831301/40	28	35	0.5	72.5	5	0.45	-
IH36831303/40	32	39	0.5	72.5	5	0.51	_
IH36831305/40	38	45	0.5	72.5	5	0.59	-
IH36831309/20	50	61	0.5	72.5	5	1.22	_

Hose layline example

RUBBER HOSE RADIOR OEL P50 II -Parker

E – Hot Water & Steam

THERMOPRESS 10

Suitable for delivery of hot water, non-aggressive hot liquids and steam to a maximum temperature of +120 °C (+248 °F). To connect boilers to air conditioning units and for hot water cleaning systems.

Hose Construction

Tube:	Black, smooth, heat resistant, EPDM nitrosamine free rubber
	compound
Reinforcement:	Synthetic textile fabrics or yarns
Cover:	Black, smooth, heat, ageing
	and weather-resistant EPDM
	nitrosamine free rubber compound

Temperature Range

-40 °C (-40 °F) to +100 °C (+212 °F), with peaks +120 °C (+248 °F)

			1
			J

- Robust structure
- Wide temperature range
- Nitrosamine free
- Design Factor 4:1

Tolerances

I.D. \leq 20 mm according to UNI EN ISO 1307 I.D. > 20 mm according to RMA steel mandrel *Refer to Technical Handbook on page TH34*

Part Number			Max. Working Pressure			Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH36800002/100	12	22.5	1.0	150.0	10	0.38	120
IH36800003/80	15	25.5	1.0	150.0	10	0.44	150
IH36800004/80	18	28.5	1.0	150.0	10	0.51	180
IH36800005/80	20	30.5	1.0	150.0	10	0.56	200
IH36800006/40	25	35	1.0	150.0	10	0.61	250
IH36800009/40	40	54	1.0	150.0	10	1.34	400

Hose layline example

VIGOR 2 EN ISO 6134 TYPE 2/A

According to EN ISO 6134 type 2/A

Designed for high pressure saturated steam (max 18 bar at +210 °C = 261 psi at +410 °F). Suitable for loading saturated and superheated steam in cleaning and sterilization applications, petrochemical industry and general steam service applications

Hose Construction

Tube:	Black, smooth, EPDM
	rubber compound. Heat and
	saturated steam resistant
Reinforcement:	High tensile steel cords
Cover:	Black, smooth, EPDM rubber com-
	pound. Heat, abrasion, ozone and
	weather resistant.
	The cover is pinpricked to prevent
	blistering and bubbling.

- Pin-pricked cover
- Working pressure for hot water 45 bar with a Design Factor of 4:1
- Design Factor 10:1

Tolerances According to EN ISO 6134 Refer to Technical Handbook on page TH34

Temperature Range

-40 °C (-40 °F) to +210 °C (+410 °F)

Part Number			S Max	k. Working	Pressure	B Weight	min. Bend Radius	
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm	
VIGOR 2 EN ISO 6134	VIGOR 2 EN ISO 6134 (black)							
IH36801700/40	13	25	1.8	261.0	18	0.50	130	
IH36801701/40	16	30	1.8	261.0	18	0.70	160	
IH36801702/40	19	33	1.8	261.0	18	0.77	190	
IH36801703/40	25	40	1.8	261.0	18	1.06	250	
IH36801704/40	32	48	1.8	261.0	18	1.39	320	
IH36801705/40	38	54	1.8	261.0	18	1.60	380	
IH36801706/40	51	69	1.8	261.0	18	2.56	500	

Hose layline example

WARNING! see page E2

RUBBER HOSE VIGOR - EN ISO 6134:2005 - 2A - steam - 18 bar - 210 °C - I.D. mm - 0 - MADE IN ITALY

Acid & Chemicals

ENGINEERING YOUR SUCCESS.

F – Acid & Chemicals

Hose	ID Range (mm)	Temp. Range (°C)	Application
POLIAX D EN 12115	19 - 100	-35 / +100	chemical resistance table
POLIAX D SM EN 12115	19 - 100	-35 / +75	chemical resistance table
POLIAX UPE CON SM EN 12115	19 - 100	-20 / +100	chemical resistance table
POLIAX UPE CON SM EN 12115 OND	19 - 75	-20 / +75	chemical resistance table
POLIAX F EN 12115	13 - 75	-40 / +150	chemical resistance table
POLIAX PHARMA	13 - 51	-60 / +200	chemical resistance table

WARNING!

If delivering chemicals over +25 °C (+77 °F), please contact us. Many chemical products can cause severe injuries to people or damage to property, and here are risks of environmental pollution in case of leakage or hose burst. All necessary measures must be taken in order to avoid accidents both during normal service operations and during hydrostatic tests, which must be carried out by trained personnel using suitable tools.

F – Acid & Chemicals

Tube	Reinforce- ment	Cover	WP (bar)	Design Factor	Suction	Industry standard	Page
EPM	textile + copper wires	EPDM	16	4		EN 12115	F4
EPM	textile + copper wires	EPDM	16	4	yes	EN 12115	F5
UHMWPE	textile + copper wires	EPDM	16	4	yes	EN 12115	F6
UHMWPE	textile + copper wires	EPDM	16	4	yes	EN12115	F7
PTFE	textile + copper wires	EPDM	16	4	yes	EN 12115	F8
SILICONE	textile + copper wires	SILICONE	6/15	3	yes		F9

POLIAX D EN 12115

According to EN 12115

Suitable for delivery of highly aggressive chemicals, according to EN 12115,

Hose Construction

Tube:	Black, smooth antistatic EPM ni-
	trosamine free rubber compound
Reinforcement:	Synthetic textile fabrics and built-in
	copper wires to facilitate the electri-
	cal connection between hose and
	end couplings
Cover:	Black, antistatic (R < 1 M Ω /m),
	EPDM rubber compound, heat,
	abrasion, ageing and weather
	resistant

Temperature Range

-35 °C (-31 °F) to +100 °C (+212 °F) For aggressive chemicals and solvents the hose is intended to be used at room temperature. The hose can be cleaned and sterilized with usual detergents or steam – a temperature of +130 °C (+266 °F) for short periods.

In-plant and storage tank transfer
Nitrosamine free
Suitable for ATEX areas
Meets TRbF 131 part 2 par 5.5 (flame resistance)
Design Factor 4:1

According to EN 12115 Refer to Technical Handbook on page TH34

Part Number			Max. Working Pressure			B Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH36810131/40	25	37	1.6	232.0	16	0.71	225
IH36810132/40	32	44	1.6	232.0	16	0.86	262.5
IH36810133/40	38	51	1.6	232.0	16	1.11	337.5
IH36810134/40	50	66	1.6	232.0	16	1.72	412.5
IH36810135/40	63.5	79,5	1.6	232.0	16	2.10	450
IH36810136/40	75	91	1.6	232.0	16	2.56	525
IH36810137/40	100	116	1.6	232.0	16	3.38	675

WARNING!

If delivering chemicals over +25 °C (+77 °F), please contact us. Many chemical products can cause severe injuries to people or damage to property, and here are risks of environmental pollution in case of leakage or hose burst. All necessary measures must be taken in order to avoid accidents both during normal service operations and during hydrostatic tests, which must be carried out by trained personnel using suitable tools.

Hose layline example

POLIAX D EN 12115:2011 - EPDM - D - I.D. - WP ...bar - Ω - TRbF 131 T2p. 5.5 - Quarter/Year - Parker MADE IN ITALY

POLIAX D SM EN 12115

According to EN 12115

Suitable for suction and delivery of highly aggressive chemicals, according to EN 12115.

Hose Construction

Tube:	Black, smooth antistatic EPM
	nitrosamine free rubber compound
Reinforcement:	Synthetic textile fabrics, embedded
	steel wire helix and built-in cop-
	per wires to facilitate the electrical
	connection between hose and end
	couplings
Cover:	Black, antistatic (R < 1 M Ω /m),
	EPDM rubber compound, heat,
	abrasion, ageing and weather
	resistant

Temperature Range

-35 °C (-31 °F) to +100 °C (+212 °F) For aggressive chemicals and solvents the hose is intended to be used at room temperature. The hose can be cleaned and sterilized with usual detergents or steam – a temperature of +130 °C (+266 °F) for short periods.

- In-plant and storage tank transfer
- Nitrosamine free
- Flexibility and kink resistance
- Suitable for ATEX areas
- Meets TRbF 131 part 2 par 5.5 (flame resistance)
- Vacuum 0.9 bar up to 63.5 mm then 0.8 bar
- Design Factor 4:1

Tolerances

According to EN 12115 Refer to Technical Handbook on page TH34

Crimp Specifications

For currently qualified crimp specifications including coupling designation, refer to CrimpSource at www.parker.com/crimpsource-euro.

Part Number			S Max	x. Working	Pressure	B Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH36810111/40	19	31	1.6	232.0	16	0.70	125
IH36810112/40	25	37	1.6	232.0	16	0.92	150
IH36810113/40	32	44	1.6	232.0	16	1.09	175
IH36810114/40	38	51	1.6	232.0	16	1.35	225
IH36810115/40	50	66	1.6	232.0	16	1.84	275
IH36810116/40	63.5	79,5	1.6	232.0	16	2.54	300
IH36810117/40	75	91	1.6	232.0	16	3.12	350
IH36810118/20	100	116	1.6	232.0	16	4.41	450

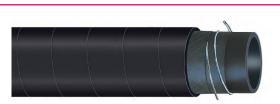
WARNING!

If delivering chemicals over +25 °C (+77 °F), please contact us. Many chemical products can cause severe injuries to people or damage to property, and here are risks of environmental pollution in case of leakage or hose burst. All necessary measures must be taken in order to avoid accidents both during normal service operations and during hydrostatic tests, which must be carried out by trained personnel using suitable tools.

Hose layline example

POLIAX D EN 12115:2011 - EPDM - SD - I.D. - WP ...bar - Ω - TRbF 131 T2p. 5.5 - Quarter/Year — Parker MADE IN ITALY

POLIAX UPE CON SM EN 12115


According to EN 12115

POLIAX UPE CON SM EN 12115 is an heavy duty hose for suction and delivery of a wide range of highly aggressive chemicals such as most industrial acids, alkalis, oils, fuels and solvents. It can be used as a flexible connection in paint plants.

Refer to the Chemical Resistant Chart to determine compatibility with specific chemicals. For severe or special applications – for tighter bending radius – or if in doubt, please ask our Technical Assistance.

Hose Construction

Tube:	Lucent, black, smooth, conductive, ultra high molecular weight poly- ethylene (UHMWPE), suitable for foodstuff contact according to FDA, EEC Directive, Italian Decrees
Reinforcement:	,
Cover:	Black, antistatic ($R < 1 M\Omega/m$), EPDM rubber compound, heat, abrasion, ageing and weather resistant

- High flexibility and kink resistance
- Fits also foodstuffs according to FDA
- Suitable for ATEX areas
- Meets TRbF 131 part 2 par 5.5 (flame resistance)
- Vacuum: 0.9 bar up to dn 63.5, 0.8 bar for larger sizes
- Design Factor 4:1

Temperature Range

-20 °C (+5 °F) to +100 °C (+212 °F)

For aggressive chemicals and solvents the hose is intended to be used at room temperature. The hose can be cleaned and sterilized with usual detergents or steam – a temperature of +130 °C (+266 °F) for short periods.

Tolerances

According to EN 12115 Refer to Technical Handbook on page TH34

Crimp Specifications

For currently qualified crimp specifications including coupling designation, refer to CrimpSource at www.parker.com/crimpsource-euro.

Part Number	nber			Max. Working Pressure			min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH36811529/40	19	31	1.6	232.0	16	0.71	187.5
IH36811530/40	25	37	1.6	232.0	16	0.87	225.0
IH36811531/40	32	44	1.6	232.0	16	1.07	262.5
IH36811532/40	38	51	1.6	232.0	16	1.35	337.5
IH36811534/40	50	66	1.6	232.0	16	2.29	412.5
IH36811535/40	63.5	79,5	1.6	232.0	16	2.51	450.0
IH36811536/40	75	91	1.6	232.0	16	3.07	525.0
IH36811538/20	100	116	1.6	232.0	16	4.43	675.0

WARNING!

If delivering chemicals over +25 °C (+77 °F), please contact us. Many chemical products can cause severe injuries to people or damage to property, and here are risks of environmental pollution in case of leakage or hose burst. All necessary measures must be taken in order to avoid accidents both during normal service operations and during hydrostatic tests, which must be carried out by trained personnel using suitable tools.

Hose layline example

POLIAX EN 12115:2011 - UPE - SD - I.D. - WP ...bar - Ω - TRbF 131 T2p. 5.5 - Quarter/Year MADE IN ITALY

POLIAX UPE CON SM OND EN 12115

According to EN 12115

POLIAX UPE CON SM EN 12115 OND is a very flexible hose suitable for suction and delivery of a wide range of highly aggressive chemicals such as most industrial acids, alkalis, oils, fuels and solvents. It can also be used as a flexible connections in paint plants.

Refer to the Chemical Resistant Chart to determine compatibility with specific chemicals. For severe or special applications – for tighter bending radius – or if in doubt, please ask our Technical Assistance.

Hose Construction

Tube:	Lucent, black, smooth, conductive, ultra high molecular weight poly- ethylene (UHMWPE), suitable for foodstuff contact according to FDA, EEC Directive, Italian Decrees
Reinforcement:	Synthetic textile fabrics, embedded steel wire helix and built-in copper wires to allow the electrical connec- tion between hose and couplings
Cover:	Black, corrugated, antistatic (R < 1 M Ω /m), EPDM rubber compound, heat, abrasion, ageing and weather resistant

- Extreme flexibility, superior kink resistance, minimal force to bend
- Fits also foodstuffs according to FDA
- Suitable for ATEX areas
- Meets TRbF 131 part 2 par 5.5 (flame resistance)
- Vacuum: 0.9 bar up to dn 63.5, for larger sizes 0.8 bar
- Design Factor 4:1

Temperature Range

-20 °C (+5 °F) to +100 °C (+212 °F) For aggressive chemicals and solvents the hose is intended to be used at room temperature. The hose can be cleaned and sterilized with usual detergents or steam – a temperature of +130 °C (+266 °F) for short periods.

Tolerances

According to EN 12115 Refer to Technical Handbook on page TH34

Part Number		Max. Working Pressure				Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH36811570/40	19	31	1.6	232.0	16	0.71	38
IH36811571/40	25	37	1.6	232.0	16	0.87	50
IH36811572/40	32	44	1.6	232.0	16	1.07	64
IH36811573/40	38	51	1.6	232.0	16	1.35	76
IH36811574/40	50	66	1.6	232.0	16	2.29	100
IH36811575/40	63.5	79,5	1.6	232.0	16	2.51	127
IH36811576/40	75	91	1.6	232.0	16	3.07	150

WARNING!

If delivering chemicals over +25 °C (+77 °F), please contact us. Many chemical products can cause severe injuries to people or damage to property, and here are risks of environmental pollution in case of leakage or hose burst. All necessary measures must be taken in order to avoid accidents both during normal service operations and during hydrostatic tests, which must be carried out by trained personnel using suitable tools.

Hose layline example

POLIAX EN 12115:2011 - UPE - SD - I.D. - WP ...bar - Ω - TRbF 131 T2p. 5.5 - Quarter/Year MADE IN ITALY

POLIAX F EN 12115

According to EN 12115

POLIAX F EN 12115 is manufactured with high quality elastomers, with excellent chemical and mechanical properties, it results suitable for suction and delivery of a wide range of highly aggressive chemicals and solvents. Hose resistant to high temperature and designed for heavy chemical, foodstuff, pharmaceutical and cosmetic industry. Full conductive hose type Ω/T according to EN 12115, R<1M Ω and R<1G Ω through the wall. Suitable also for ATEX area.

Not to be used with chlorine tri-fluoride, chlorine and fluorine gas, oxygen di-fluoride, phosgene and molten alkalis (e.g., sodium).

Hose Construction

- Tube: Black, smooth, phthalates free PTFE (polytetrafluoroethylene). Superior resistance to high temperature, mechanical stress and to oxidation.
- **Reinforcement:** High temperature resistant plies, galvanized helix wire and copper wires to discharge electricity.
- **Cover:** Black, smooth, conducting (R < 1 M Ω/m) EPDM rubber compound, ageing, ozone and abrasion resistant.

- Fits also foodstuffs according to FDA
- Suitable for ATEX areas zone 0, 1 and 2
- Meets TRbF 131 part 2 par 5.5 (flame resistance)
- Meets USP XXXII class VI requirements
- Vacuum: 0.9 bar
- Design Factor 4:1

Temperature Range

-40 °C (-40 °F) to +150 °C (+302 °F)

For aggressive chemical and solvents intended to be used at high temperature please contact out Technical Assistance. For cleaning & sterilization refer to "Guidelines to the Use and Cleaning of Food and Pharma rubber hoses".

Tolerances

According to EN 12115 Refer to Technical Handbook on page TH34

Part Number			Max	k. Working	Pressure	Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH36811541/0	13	25	1.6	232	16	0.54	90
IH36811542/0	19	31	1.6	232	16	0.70	130
IH36811543/0	25	37	1.6	232	16	0.86	170
IH36811544/0	32	44	1.6	232	16	1.18	215
IH36811545/0	38	51	1.6	232	16	1.43	255
IH36811546/0	50	66	1.6	232	16	2.08	330
IH36811547/0	63.5	79.5	1.6	232	16	2.96	430
IH36811548/0	75	91	1.6	232	16	3.43	510

WARNING!

If delivering chemicals over +25 °C (+77 °F), please contact us. Many chemical products can cause severe injuries to people or damage to property, and here are risks of environmental pollution in case of leakage or hose burst. All necessary measures must be taken in order to avoid accidents both during normal service operations and during hydrostatic tests, which must be carried out by trained personnel using suitable tools.

Hose layline example

POLIAX F EN 12115:2011 - PTFE - SD - I.D. - WP 16 bar - Q/T - TRbF 131/T2 - Quarter/Year -Parker wox POLIAX F EN 12115:2011 - PTFE - SD - I.D. - WP 16 bar - Q/T - TRbF 131/T2 - Quarter/Year

F8

POLIAX PHARMA

Flexible hose suitable for suction and delivery of pharmaceutical and cosmetic products and also suitable for food transfer. Not intended for use as an implant material. This silicone hose shows a Platinum-catalyzed cure system.

Not suitable for blood or human fluids.

Hose Construction

Tube:	Translucent, smooth, phthalates free, SILICONE rubber compound insulating.
Reinforcement:	High temperature resistant plies and- stainless steel wire helix
Cover:	Translucent, smooth, SILICONE rubber compound insulating, heat, ageing, ozone and abrasion resistant.

Temperature Range

-60 °C (-76 °F) to +200 °C (+392 °F)

For aggressive chemicals and solvents intended to be used at high temperature please contact out Technical Assistance. For cleaning & sterilization refer to "Guidelines to the Use and Cleaning of Food and Pharma rubber hoses"

Tolerances

According to UNI EN ISO 1307

- Meets European Pharmacopoeia 3.1.9 Ed. VII 2011
- 3A Sanitary Standard Class II
- Japan Ministry of Health and Welfare Notice No.370, 1959, No.201, 2006 and revision 2012
- USP XXXII class VI requirements
- ISO 10993 Sections5,10,11:2009
- FDA CFR 21 PART 177.2600
- DM 21/03/1973
- BfR Reccomandation XV & XXI Cat. 2
- European Reglement 1935/2004/CE
- Tested in compliance with 907/2006/CE (REACH)
- Vacuum: 0.9 bar
- Design Factor 3:1

Part Number			S Max	k. Working	Pressure	B Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH36811580/0	13	24	1.5	225	15	0.46	60
IH36811581/0	16	27	1.4	210	14	0.53	70
IH36811582/0	19	30	1.3	195	13	0.6	80
IH36811583/0	25	36	1.0	150	10	0.73	100
IH36811584/0	32	43	0.8	120	8	0.89	130
IH36811585/0	38	51	0.7	105	7	1.21	155
IH36811586/0	51	64	0.6	90	6	1.56	210

WARNING!

If delivering chemicals over +25 °C (+77 °F), please contact us. Many chemical products can cause severe injuries to people or damage to property, and here are risks of environmental pollution in case of leakage or hose burst. All necessary measures must be taken in order to avoid accidents both during normal service operations and during hydrostatic tests, which must be carried out by trained personnel using suitable tools.

Hose layline example

POLIAX -PHARMA Parker

Material Handling

ENGINEERING YOUR SUCCESS.

G – Material Handling

Hose	ID Range (mm)	Temp. Range (°C)	Application
LIBECCIO EN ISO 3861	19 - 80	-30 / +70	wet and dry sand and cement
BETON 80	51 - 125	-40 / +70	high pressure concrete pumping
CERGOM	25 - 200	-30 / +70	high abrasive materials
ASPIREX	20 - 100	-15 / +60	suction equipment

Tube	Reinforce- ment	Cover	WP (bar)	Design Factor	Suction	Industry standard	Page
BR/NR	textile	SBR/NBR	10	4		EN ISO 3861	G4
NR/SBR	steel wire	NR/SBR	80	2.5			G5
CERAMIC	textile + copper wires	SBR/NBR	6	3	yes		G6
PVC	PVC wire	PVC	-	-	yes		G7

LIBECCIO EN ISO 3861

According to EN ISO 3861

Suitable for conveying of wet and dry sand and grit blasting materials.

Hose Construction

Tube:	Smooth, black, antistatic, abrasion resistant BR/NR rubber compound. Abrasion according to ISO 4649: max. 60 - 70 mm ³
Reinforcement: Cover:	Synthetic textile fabrics Black, smooth, antistatic, weather and abrasion resistant SBR/NBR compound. The cover is pinpricked to prevent blistering and bubbling, max. resistance on finished hose: $2,0 \text{ M}\Omega/\text{m}$

According to RMA steel mandrel Refer to Technical Handbook on page TH34

Part Number			S Ma	k. Working	Pressure	Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH36820300/40	19	33	1.0	150.0	10	0.69	190
IH36820200/40	25	40	1.0	150.0	10	0.92	250
IH36820201/40	30	45	1.0	150.0	10	1.05	300
IH36820202/40	32	48	1.0	150.0	10	1.37	320
IH36820303/40	38	55	1.0	150.0	10	1.46	380
IH36820206/40	50	72	1.0	150.0	10	2.54	500
IH36820207/40	60	82	1.0	150.0	10	2.95	600
IH36820209/20	80	105	1.0	150.0	10	4.32	800

Temperature Range

-30 °C (-22 °F) to +70 °C (+158 °F)

Hose layline example

RUBBER HOSE LIBECCIO EN ISO 3861 ID mm - WP 1,0 MPa - ABRASION 60/70 mm³

-Parker

BETON 80

Suitable for placement of concrete at casting locations by concrete pumps at the ends of the machine arms.

Hose Construction

Tube:	Smooth, black NR/SBR compound
	resistant to the abrasive action of
	the concrete abrasion DIN 53516:
	max. 50±5 mm ³
Reinforcement:	Steel wire cord plies
Cover:	Black, smooth, weather and abra-
	sion resistant NR/SBR rubber
	compound

Temperature Range

-40 °C (-40 °F) to +70 °C (+158 °F)

(7	7	((
					HEEFA

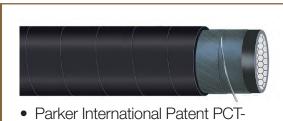
- Flexibility and kink resistance also for easy cleaning
- Wet abrasive materials
- High abrasion resistant tube assures longer service life
- Dedicated fitting series
- Design Factor 2.5:1

Tolerances

On outside diameter According to RMA steel mandrel On inside diameter

According to UNI EN ISO 1307 Refer to Technical Handbook on page TH34

Part Number			Max. Working Pressure			Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH36827051/0	51	75	8	1200	80	3.96	380
IH36827052/0	65	89	8	1200	80	4.84	400
IH36827053/0	76	100	8	1200	80	5.4	400
IH36827054/0	100	124	8	1200	80	7.04	550
IH36827055/0	125	150	8	1200	80	8.9	700


CERGOM

Parker Global Product

Suitable for pneumatic suction and delivery of dry cement, coal, CDR (fuel by-waste material), minerals, ceramic powder, glass recovery, fibreglass, and to load tankers and storage bins or silos. Applications in the industries: steelworks, cookery, thermoelectric power plant, cement works, mining industries, ceramic works, glassworks, insulating material manufactures etc. Supplied in customized lengths.

Hose Construction

Tube:	Ceramic hexagonal plates (sinterized
	Alumina Oxide) processed to match
	black BR/NR rubber compound,
	highly resistant to abrasion
Reinforcement:	Synthetic textile fabrics, embedded
	steel wire helix and built-in copper
	wires to provide electrical continuity
	between both ends
Cover:	Black, antistatic (R < 2.0 M Ω /m),
	abrasion and weather-resistant,
	SBR/NBR rubber compound

- Parker International Patent PCT-EP2007-057488
- Outstanding resistance at the abrasion
- Unique construction provides service life many times longer than traditional rubber hoses
- Reduces operations, logistics and admin costs
- Customized assemblies
 with built-in tech
- Design Factor 3:1

Tolerances

Length tolerance ± 1 %

Fittings

DIN 2817 PN 16 built-in (max length hose: from I.D. 42 to 125 mm = 20 m; other diameters = 10 m)

Part Number			Max. Working Pressure			Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH36829020/0	25	49	1.0	145.0	10	2.59	375
IH36829021/0	32	56	1.0	145.0	10	3.07	480
IH36829022/0	38	62	1.0	145.0	10	3.48	570
IH36829023/0	42	66	1.0	145.0	10	3.75	630
IH36829024/0	48	72	1.0	145.0	10	4.17	720
IH36829025/0	50	74	1.0	145.0	10	4.31	750
IH36829026/0	60	86	1.0	145.0	10	5.27	900
IH36829027/0	63.5	90	1.0	145.0	10	5.54	953
IH36829028/0	70	100	1.0	145.0	10	6.00	1050
IH36829029/0	75	105	1.0	145.0	10	6.35	1125
IH36829030/0	80	110	1.0	145.0	10	6.93	1200
IH36829031/0	100	132	1.0	145.0	10	8.56	1500
IH36829032/0	114	147	1.0	145.0	10	13.24	1710
IH36829033/0	125	158	1.0	145.0	10	14.42	1875
IH36829034/0	150	188	1.0	145.0	10	19.42	2250
IH36829035/0	200	240	1.0	145.0	10	27.68	3045

Temperature Range -30 °C (-22 °F) to +70 °C (+158 °F)

Hose layline example

RUBBER HOSE CERGOM — Parker

ASPIREX

Suitable for suction of air, dust, fumes, saw-dust and wood-shavings. Also suitable for centralized suction equipment in wood, textile, china and welding equipment. It is also suitable for use on agricultural machinery.

Hose Construction

Flexible hose having a grey, rigid PVC spiral embedded in a metalized grey, flexible PVC wall. Externally corrugated, smooth inner surface. Self-extinguishing.

Temperature Range

-15 °C (+5 °F) to +60 °C (+140 °F)

- Self-extinguishing hose
- According to UL 94 V-2
- General purpose hose
- Not to be used under pressure
- Vacuum 0.75 bar for ID up to 50 mm then 0.40 bar

Tolerances

Refer to Technical Handbook on page TH34

Part Number			S Max	k. Working l	Pressure	Weight	min. Bend Radius
	I.D. (mm)	Wall (mm)	MPa	psi	bar	kg/m	mm
IH35560020/50	20	2.6	_	-	_	0.14	20
IH35560025/50	25	2.9	-	-	-	0.18	25
IH35560040/50	40	3.9	-	_	-	0.36	40
IH35560050/50	50	4.2	-	_	-	0.52	50
IH35560060/50	60	4.4	-	_	-	0.64	60
IH35560070/50	70	4.8	-	_	-	0.76	70
IH35560080/50	80	5.0	-	-	-	0.97	80
IH35560100/30	100	5.3	-	-	-	1.27	100

Hose layline example

ASPIREX I.D. mm - SELF-EXTINGUISHING PARKER

Beverage & Food

ENGINEERING YOUR SUCCESS.

H – Beverage & Food

Hose	ID Range (mm)	Temp. Range (°C)	Application
DRINKPRESS WB/L 10	10 - 25	-30 / +110	food & beverage, wash-down
GAMBRINUS UPE SM EN12115	19 - 100	-20 / +100	food & beverage
GAMBRINUS BLUE 10	19 - 80	-30 / +80	fatty food & beverage
GAMBRINUS BLUE SM 10	19 - 102	-30 / +80	fatty food & beverage
GAMBRINUS RED SM 10	19 - 102	-40 / +120	wine and soft drinks food & beverage
VINITRESS	6 - 40	-20 / +60	food & beverage
APERSPIR	12 - 150	-10 / +60	food & beverage

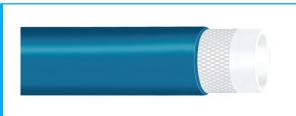
Guidelines to the use and cleaning of food rubber hose

Refer to Technical Handbook on page TH13

Tube	Reinforce- ment	Cover	WP (bar)	Design Factor	Suction	Industry standard	Page
NBR	textile	NBR/PVC	10	4		FDA - EC	H4
UHMWPE	textile + copper wires	EPDM	16	4	yes	**EN12115-FDA-DM	H5
NBR	textile	NBR/PVC	10	3		* BfR - DM - FDA - EC	H6
NBR	textile	NBR/PVC	10	3	yes	* BfR - DM - FDA - EC	H7
EPDM	textile	EPDM	10	3	yes	* BfR - DM - FDA - EC	H8
PVC	textile	PVC	20	3		EC 90/128 CLASS A-B-C	H9
PVC	steel wire	PVC	15	3	yes	EC 90/128 CLASS A-B-C	H10

* BfR Class2 - DM 21/03/73 - FDA title21 - EC 1935/2004 ** EN 12115 - FDA title21 - DM 21/03/73 - DM 220 26/04/93

DRINKPRESS WB/L 10


Designed for delivery of all foodstuffs containing vegetable fats and fluids as well as beverages such as wine, fruit juices and liqueurs. Also suitable for wash-down in food processing with hot water.

Hose Construction

Tube:	White, smooth, NBR food quality
	rubber compound
Reinforcement:	High tensile synthetic yarns
Cover:	Blue, smooth, abrasion, vegetable
	fats, ozone and weather resistant
	NBR/PVC rubber compound

Temperature Range

-30 °C (-22 °F) to +110 °C (+230 °)

- Multipurpose food grade hose
- According to FDA 21 EC 1935/2004
- Versatility of use, food transfer, wash-down applications
- Design Factor 3:1

Tolerances

According to UNI EN ISO 1307/97 Refer to Technical Handbook on page TH34

Crimp Specifications

For currently qualified crimp specifications including coupling designation, refer to CrimpSource at www.parker.com/crimpsource-euro.

Part Number	mber			Max. Working Pressure			min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH30240022/40	10	19	1	150	10	0.31	80
IH30240020/40	13	23	1	150	10	0.42	105
IH30240025/40	16	26	1	150	10	0.49	130
IH30240030/40	19	30	1	150	10	0.71	150
IH30240035/40	25	36	1	150	10	1.05	200

Hose layline example

RUBBER HOSE DRINKPRESS IT FDA -Parker MADE IN ITALY MCXX

GAMBRINUS UPE SM EN 12115

According to EN 12115

Designed to handle all beverages such milk, mineral water, fruit juices, wine, liqueurs etc.., as well as animal or vegetable fats and oils. It is also suitable for sanitary materials. UHMWPE tube does not leach into and contaminate the product conveyed. Suitable for suction and delivery.

Hose Construction

Tube:	Smooth, white undercoat, ultra
	high molecular weight translucent
	polyethylene (UHMWPE), suitable
	for foodstuff contact
Reinforcement:	Synthetic textile fabrics with embed-
	ded steel wire helix and copper wire
	to allow electrical connection
	between hose and couplings
Cover:	Blue, abrasion and weather
	resistant EPDM rubber compound

- According to EN 12115 -FDA title21 - DM 21/03/73 -DM 220 26/04/93
- Compatibility with all liquid foodstuffs & outstanding performance in one solution
- Design Factor 4:1
- Vacuum: 0.8 bar max

Tolerances

According to EN 12115 Refer to Technical Handbook on page TH34

Temperature Range

-20 °C (-4 °F) to +100 °C (+212 °F) sterilization at 130 °C for short periods

Part Number			💱 ма	ax. Working	g Pressure	Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH36242301/40	19	31	1.6	232.0	16	0.70	190
IH36242302/40	25	37	1.6	232.0	16	0.90	225
IH36242303/40	32	44	1.6	232.0	16	1.20	260
IH36242304/40	38	51	1.6	232.0	16	1.50	335
IH36242305/40	50	66	1.6	232.0	16	2.20	410
IH36242306/40	63.5	79,5	1.6	232.0	16	2.80	450
IH36242307/40	75	91	1.6	232.0	16	3.30	525
IH36242309/40	100	116	1.2	180.0	12	4.70	675

Hose layline example

GAMBRINUS UPE SD - I.D. - WP ...bar - M - 🔐 FDA - D.M. 21/03/73 Parker MADE IN ITALY

GAMBRINUS BLUE 10

Designed to handle fatty foods, milk in a variety of transfer and delivery applications, including milk collection.

Hose Construction

Tube:	White, smooth NBR Phthalates free
	rubber compound, non-toxic,
	odorless and taste-free.
	Manufactured on stainless
	steel mandrel for the maximum
	cleanliness, hygienic standards and
	a bacteria-free surface.
Reinforcement:	Synthetic textile fabrics
Cover:	Blue NBR/PVC rubber compound,
	non- marking, abrasion and
	weather-resistant

Temperature Range

-30 °C (-22 °F) to +80 °C (+176 °F) sterilization at 110 °C for max 10 min.

- According to FDA, BfR class 2, DM 21/03/73, EC 1935/2004
- Indoors and outdoors
- ADI free
- Design Factor 3:1

Tolerances

According to RMA steel mandrel Refer to Technical Handbook on page TH34

Crimp Specifications

For currently qualified crimp specifications including coupling designation, refer to CrimpSource at www.parker.com/crimpsource-euro.

Part Number			S Ma	ax. Working	g Pressure	Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH36242431/40	19	29	1.0	150.0	10	0.67	120
IH36242432/40	25	36	1.0	150.0	10	0.80	150
IH36242434/40	32	44	1.0	150.0	10	1.23	190
IH36242435/40	38	50	1.0	150.0	10	1.38	240
IH36242436/40	40	52	1.0	150.0	10	1.41	250
IH36242437/40	45	57	1.0	150.0	10	1.62	310
IH36242438/40	51	64	1.0	150.0	10	1.88	350
IH36242439/40	60	73	1.0	150.0	10	2.24	410
IH36242441/40	70	83	1.0	150.0	10	2.86	550
IH36242443/40	80	93	1.0	150.0	10	3.17	630

Hose layline example

RUBBER HOSE GAMBRINUS BLUE 10 bar 🔐 FDA - EC 1935/2004

GAMBRINUS BLUE 10 SM

Designed to handle fatty foods, milk in a variety of suction and delivery applications indoors and outdoors, including milk collection.

Hose Construction

Tube:	White, smooth NBR Phthalates free rubber compound, non-toxic, odorless and taste-free. Manufactured on stainless steel mandrel for the maximum cleanli- ness, hygienic standards and a bacteria-free surface.
Reinforcement:	5
Cover:	embedded steel wire helix
Cover:	Blue NBR/PVC rubber compound, non-marking, abrasion and weather-resistant.

Temperature Range

-30 °C (-22 °F) to +80 °C (+176 °F) sterilization at 110 °C for max 10 min.

- - According to FDA, BfR class 2, DM 21/03/73, EC 1935/2004
 - Excellent flexibility, kink resistance, easy handling
 - ADI free
 - Design Factor 3:1
 - Vacuum: 0.9 bar

Tolerances

According to RMA steel mandrel Refer to Technical Handbook on page TH34

Crimp Specifications

For currently qualified crimp specifications including coupling designation, refer to CrimpSource at www.parker.com/crimpsource-euro.

Part Number			🔉 ма	ax. Working	J Pressure	Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH36242401/40	19	29	1.0	150.0	10	0.67	38
IH36242402/40	25	36	1.0	150.0	10	0.80	50
IH36242404/40	32	44	1.0	150.0	10	1.23	64
IH36242405/40	38	50	1.0	150.0	10	1.38	76
IH36242406/40	40	52	1.0	150.0	10	1.41	80
IH36242408/40	51	64	1.0	150.0	10	1.88	102
IH36242410/40	63.5	77	1.0	150.0	10	2.60	160
IH36242411/40	65	79	1.0	150.0	10	2.66	170
IH36242413/40	76	89	1.0	150.0	10	3.00	190
IH36242414/40	80	93	1.0	150.0	10	3.17	250
IH36242415/20	102	116	1.0	150.0	10	4.60	380

Hose layline example

RUBBER HOSE GAMBRINUS BLUE 10 bar 🖫 FDA - EC 1935/2004

GAMBRINUS RED 10 SM

Recommended for wine, beer, liqueurs, fruit juice and soft drinks in process, package and transfer phase. Ideal either fixed and mobile installation. Not suitable for fatty food. Designed for suction and delivery.

Hose Construction

Tube:	White, smooth EPDM Phthalates
	free rubber compound, non-toxic,
	odorless and taste-free.
	Manufactured on stainless steel
	mandrel for the maximum
	cleanliness and hygienic standards
Reinforcement:	Synthetic textile fabrics and
	embedded steel wire helix
Cover:	Red EPDM rubber compound,
	non-marking, abrasion and
	weather-resistant

Temperature Range

-40 °C (-40 °F) to +120 °C (+248 °F) sterilization at 130 °C for max 30 min.

- According to FDA, BfR class 2, DM 21/03/73, EC 1935/2004
- Up to 96 % alcoholic content
- Excellent flexibility, kink resistance, easy handling
- ADI free
- Crimped Stainless Steel Fittings available
- Design Factor 3:1
- Vacuum: 0.9 bar

Tolerances

According to RMA steel mandrel Refer to Technical Handbook on page TH34

Crimp Specifications

For currently qualified crimp specifications including coupling designation, refer to CrimpSource at www.parker.com/ crimpsource-euro.

Part Number			🎡 ма	ax. Working	Pressure	B Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH36242501/40	19	29	1.0	150.0	10	0.67	80
IH36242502/40	25	36	1.0	150.0	10	0.80	125
IH36242503/40	30	42	1.0	150.0	10	1.11	150
IH36242504/40	32	44	1.0	150.0	10	1.23	160
IH36242505/40	38	50	1.0	150.0	10	1.38	190
IH36242506/40	40	52	1.0	150.0	10	1.41	200
IH36242507/40	45	57	1.0	150.0	10	1.62	225
IH36242508/40	51	64	1.0	150.0	10	1.88	255
IH36242509/40	60	73	1.0	150.0	10	2.24	300
IH36242510/40	63.5	77	1.0	150.0	10	2.60	320
IH36242511/40	76	89	1.0	150.0	10	3.00	390
IH36242512/40	80	93	1.0	150.0	10	3.17	440
IH36242513/20	102	116	1.0	150.0	10	4.60	560

Hose layline example

RUBBER HOSE GAMBRINUS RED 10 bar Bfr - D.M. 21/03/73

 (\mathbf{P})

– Beverage & Food

Т

For delivery of foodstuff in general industrial purposes and for agriculture applications.

Hose Construction Flexible, transparent PVC hose having a textile reinforcement between the walls.

Temperature Range -20 °C (-4 °F) TO +60 °C (140 °F) sterilization at 130 °C for short periods

- According to European Directive EU 10/2011 Class A, B and C
- Low duty mission profile
- Transparent structure to visually monitor the passage of media
- Design Factor 3:1

Tolerances

Refer to Technical Handbook on page TH34

Part Number			💱 ма	ax. Working	Pressure	Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH35033229/100	6	12	2.0	300.0	20	0.10	40
IH35033230/100	8	14	2.0	300.0	20	0.13	50
IH35033223/50	9	15	2.0	300.0	20	0.14	50
IH35033231/100	10	16	2.0	300.0	20	0.15	60
IH35033220/50	13	19	1.2	174.0	12	0.18	80
IH35033222/50	15	21	1.2	174.0	12	0.21	90
IH35033221/50	19	26	1.0	150.0	10	0.30	110
IH35033245/50	25	33	0.8	116.0	8	0.44	150
IH35033241/25	32	42	0.7	101.5	7	0.71	190
IH35033240/25	40	50	0.6	87.0	6	0.86	240

Hose layline example

VINITRESS I FOOD QUALITY - MADE IN ITALY - PARKER

APERSPIR

Suitable for suction and delivery of foodstuff in general industrial purposes and for agriculture applications.

Hose Construction

Flexible and light hose having an harmonic steel wire helix embedded in a transparent PVC wall.

Temperature Range

-10 °C (+14 °F) to +60 °C (+140 °F)

- According to European Directive EU 10/2011 Class A, B and C
- Medium and heavy duty mission profile
- Vacuum: 0.9 bar
- Design factor 3:1

Part Number			S Ma	ax. Working	g Pressure	B Weight	min. Bend Radius
	I.D. (mm)	Wall (mm)	MPa	psi	bar	kg/m	mm
IH35641012/30	12	3.1	1.2	174.0	12	0.19	24
IH35641016/50	16	3.1	1.2	174.0	12	0.26	32
IH35641019/50	19	3	1.1	160.0	11	0.33	28
IH35641020/50	20	3	1	145.0	10	0.34	30
IH35641025/50	25	3.7	1	145.0	11	0.52	38
IH35641030/50	30	3.7	0.9	130.0	9	0.63	45
IH35641032/50	32	4	0.9	130.0	9	0.66	48
IH35641038/50	38	4	0.9	130.0	9	0.80	57
IH35641040/50	40	4.5	0.9	130.0	9	0.95	80
IH35641045/50	45	4.5	0.9	130.0	9	1.15	67
IH35641050/50	50	4.9	0.9	130.0	9	1.30	75
IH35641060/50	60	5.5	0.9	130.0	9	1.75	120
IH35641075/50	75	6.5	0.9	130.0	9	2.30	150
IH35641100/30	100	7.5	0.9	130.0	9	3.65	200
IH35641120/30	120	7.5	0.9	130.0	9	4.30	240
IH35641125/30	125	7.8	0.9	130.0	9	4.60	250
IH35641150/20	150	9	0.9	130.0	9	6.50	300

Hose layline example

APERSPIR I.D. mm. 🕅 FOOD QUALITY - MADE IN ITALY - PARKER

Tolerances Refer to Technical Handbook on page TH34

Multipurpose & Air

ENGINEERING YOUR SUCCESS.

I – Multipurpose & Air

Hose	ID Range (mm)	Temp. Range (°C)	Application
GST II BLACK 15	5 - 38	-40 / +100	compressed air, non aggressive liquids
GST II RED 15	6.5 - 38	-40 / +100	compressed air, non aggressive liquids
GST II BLACK 20	6.5 - 25	-40 / +100	compressed air, non aggressive liquids
PYTHON N/L 20	13 - 25	-40 / +120	multipurpose
PYTHON NV/L 20	10 - 50	-40 / +120	multipurpose
PYTHON NY/L 30	6 - 100	-40 / +120	multipurpose
JUMBO N/L	13 - 25	-40 / +120	multipurpose
MINIERA 20 MSHA	19 - 50	-30 / +80	compressed air, non aggressive liquids
E-Z FORM™ MP	12.7 - 75	-34 / +120	high flexible hose for multipurpose
OILPRESS N/L 20	6 - 25	-35 / +100	multipurpose
APERFRUT 20	13 - 19	-15 / +60	agricultural spray
APERFRUT 40	10	-15 / +60	agricultural spray
APERFRUT 80	8 - 13	-15 / +60	agricultural spray

Tube	Reinforce- ment	Cover	WP (bar)	Design Factor	Suction	Industry standard	Page
EPDM	textile	EPDM	15	4			14
EPDM	textile	EPDM	15	4			15
EPDM	textile	EPDM	20	4			16
EPDM	textile	EPDM	20	3			17
EPDM	textile	EPDM	20	3			18
EPDM	textile	EPDM	30	3			19
EPDM	textile	EPDM	20	3			l10
SBR/NBR	textile	CR	20	3		MSHA	111
NBR	textile	CR/NBR	5	4	yes		l12
NBR	textile	NBR/PVC	20	3			113
PVC	textile	PVC	20	4			I 14
PVC	textile	PVC	40	3			114
PVC	textile	PVC	80	2.5			I 14

 \bigcirc

GST II BLACK 15

Parker Global Product

In agriculture, construction, air tool lubricant systems and general industrial for air (including oil mist), mild chemicals and water. Suitable for MRO and OEM channel. Not to be used with oil or refined fuel.

Hose Construction

Tube:	Black EPDM,
	antistatic rubber compound
Reinforcement:	Synthetic textile yarns.
Cover:	Black, smooth EPDM antistatic
	rubber compound resistant to
	abrasion, heat and ozone

Temperature Range

-40 °C (-40 °F) to +100 °C (+212 °F)

According to UNI EN ISO 1307 Refer to Technical Handbook on page TH34

Crimp Specifications

For currently qualified crimp specifications including coupling designation, refer to CrimpSource at www.parker.com/ crimpsource-euro.

Part Number			🏠 Max	k. Working	Pressure	B Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH709319200/40	5	11	1.5	200.0	15	0.10	40
IH709325200/100	6.5	13	1.5	200.0	15	0.13	50
IH709325200/40	6.5	13	1.5	200.0	15	0.13	50
IH709331200/100	8	15	1.5	200.0	15	0.16	65
IH709331200/40	8	15	1.5	200.0	15	0.16	65
IH709338200/100	9.5	17	1.5	200.0	15	0.20	75
IH709338200/40	9.5	17	1.5	200.0	15	0.20	75
IH709350200/100	13	21	1.5	200.0	15	0.29	105
IH709350200/40	13	21	1.5	200.0	15	0.29	105
IH709363200/100	16	25	1.5	200.0	15	0.36	130
IH709363200/40	16	25	1.5	200.0	15	0.36	130
IH709375200/40	19	28	1.5	200.0	15	0.49	150
IH7093100200/40	25	36	1.5	200.0	15	0.69	200
IH7093125204/40	32	45	1.5	200.0	15	1.15	230
IH7093150204/40	38	52	1.5	200.0	15	2.76	250

Hose layline example

-Parker SERIES 7093 GST[®] II ... ID (..mm) 200 PSI (15 bar) MAX WP

GST II RED 15

Parker Global Product

In agriculture, construction, air tool lubricant systems and general industrial for air (including oil mist), mild chemicals and water. Suitable for MRO and OEM channel. Not to be used with oil or refined fuel..

Hose Construction

Tube:	Black EPDM,
	antistatic rubber compound.
Reinforcement:	Synthetic textile yarns
Cover:	Red, smooth EPDM insulating
	rubber compound resistant to
	abrasion, heat and ozone

Temperature Range

-40 °C (-40 °F) to +100 °C (+212 °F)

- Nitrosamine free
- Permanent fittings capability
- EPDM compound suitable also for oil mist
- Design Factor 4:1

 \mathbf{Y}

Tolerances

According to UNI EN ISO 1307 Refer to Technical Handbook on page TH34

Crimp Specifications

For currently qualified crimp specifications including coupling designation, refer to CrimpSource at www.parker.com/ crimpsource-euro.

Part Number			S Ma	k. Working	Pressure	B Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH709225200/40	6.5	13	1.5	200.0	15	0.13	50
IH709231200/40	8	15	1.5	200.0	15	0.16	65
IH709238200/40	9.5	17	1.5	200.0	15	0.20	75
IH709250200/40	13	21	1.5	200.0	15	0.29	105
IH709263200/40	16	25	1.5	200.0	15	0.36	130
IH709275200/40	19	28	1.5	200.0	15	0.49	150
IH7092100200/40	25	36	1.5	200.0	15	0.69	200
IH7092125204/40	32	45	1.5	200.0	15	1.15	230
IH7092150204/40	38	52	1.5	200.0	15	2.76	250

Hose layline example

GST II BLACK 20

Parker Global Product

Designed for compressed air with traces of oil in industrial application. Also suitable in agriculture, construction, and general industry for water, mild chemicals and non aggressive fluids. Not to be used with oil or refined fuel.

Hose Construction

Tube:	Black EPDM,
	antistatic rubber compound.
Reinforcement:	Synthetic textile yarns.
Cover:	Black, smooth EPDM antistatic
	rubber compound resistant to
	abrasion, heat and ozone

Temperature Range

-40 °C (-40 °F) to +100 °C (+212 °F)

Tolerances

According to UNI EN ISO 1307 Refer to Technical Handbook on page TH34

Crimp Specifications

For currently qualified crimp specifications including coupling designation, refer to CrimpSource at www.parker.com/ crimpsource-euro.)

Part Number			S Max	k. Working	Pressure	Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH709325300/100	6.5	14	2.0	300.0	20	0.16	50
IH709331300/100	8	16	2.0	300.0	20	0.20	65
H709332300/100	8	17	2.0	300.0	20	0,21	70
IH709338300/100	9.5	17.5	2.0	300.0	20	0.23	75
IH709350304/100	13	22	2.0	300.0	20	0.36	105
IH709363304/100	16	27	2.0	300.0	20	0.52	130
IH709375304/40	19	29.5	2.0	300.0	20	0.56	150
IH7093100304/40	25	36.5	2.0	300.0	20	0.75	200

Hose layline example

Parker SERIES 7093 GST® II ... ID (..mm) 300 PSI (20 bar) MAX WP

PYTHON N/L 20

Designed for air, cold and hot water and light-chemical media. Major properties of PYTHON hoses are:

- high ozone resistance
- antistatic resistance
- high temperature resistance
- low temperature resistance
- non-staining cover
- high flexibility

Hose Construction

Tube:	Black, antistatic (R< $10^6 \Omega$ /m), smooth EPDM nitrosamine free rubber compound, resistant to light- chemical media
Reinforcement: Cover:	Synthetic textile yarns Black, antistatic (R<10 ⁶ Ω/m), smooth EPDM nitrosamine free rubber compound

- Antistatic tube and cover suitable for Atex applications
- Unmatchable handiness
- Wide range temperature
- Its versatility of use helps to keep a controlled stock
- Nitrosamine free
- Design Factor 3:1

Temperature Range

-40 °C (-40 °F) to +120 °C (+248 °F) with peaks to +140 °C (+284 °F)

Tolerances

I.D. \leq 25 mm according to UNI EN ISO 1307 I.D. > 25 mm according to RMA steel mandrel *Refer to Technical Handbook on page TH34*

Crimp Specifications

For currently qualified crimp specifications including coupling designation, refer to CrimpSource at www.parker.com/ crimpsource-euro.

Part Number			Max. Working Pressure			B Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH30351271/40	13	20	2.0	300.0	20	0.26	80
IH30351273/40	19	27	2.0	300.0	20	0.41	110
IH30351274/40	25	34	2.0	300.0	20	0.60	150

Hose layline example

-Parker PYTHON 20 bar 📀

 $\neg \Lambda$

PYTHON NV/L 20

Designed for air, cold and hot water and light-chemical media. Major properties of PYTHON hoses are:

- high ozone resistance
- antistatic resistance
- high temperature resistance
- low temperature resistance
- non-staining cover
- high flexibility

Hose Construction

Tube:	Black, antistatic, smooth EPDM
	nitrosamine free rubber compound,
	resistant to light-chemical media
Reinforcement:	Synthetic textile yarns
Cover:	Green, smooth EPDM
	nitrosamine free rubber compound

Temperature Range

-40 °C (-40 °F) to +120 °C (+248 °F) with peaks to +140 °C (+284 °F)

 $\label{eq:l.D.} I.D. \leq 25 \mbox{ mm} \mbox{ according to UNI EN ISO 1307} \\ I.D. > 25 \mbox{ mm} \mbox{ according to RMA steel mandrel} \\ Refer to Technical Handbook on page TH34 \\ \end{tabular}$

Crimp Specifications

For currently qualified crimp specifications including coupling designation, refer to CrimpSource at www.parker.com/ crimpsource-euro.

Part Number			S Max	k. Working	Pressure	B Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH30351200/40	10	17	2.0	300.0	20	0.22	60
IH30351201/40	13	20	2.0	300.0	20	0.26	80
IH30351202/40	15	22	2.0	300.0	20	0.29	90
IH30351203/40	19	27	2.0	300.0	20	0.41	110
IH30351204/40	25	34	2.0	300.0	20	0.60	150
IH36351201/40	32	44	2.0	300.0	20	0.98	320
IH36351202/40	38	51	2.0	300.0	20	1.20	380
IH36351203/40	42	56	2.0	300.0	20	1.42	420
IH36351204/40	50	66	2.0	300.0	20	1.76	500

Hose layline example

-Parker PYTHON 20 bar 🕀

Catalogue 4401/UK

PYTHON NY/L 30

Designed for air, cold and hot water and light-chemical media. Major properties of PYTHON hoses are:

- high ozone resistance
- antistatic resistance
- high temperature resistance
- low temperature resistance
- non-staining cover
- high flexibility

Hose Construction

Tube:	Black, antistatic, smooth EPDM
	nitrosamine free rubber compound,
	resistant to light-chemical media
Reinforcement:	Synthetic textile yarns
Cover:	Yellow, smooth EPDM
	nitrosamine free rubber compound

Temperature Range

-40 °C (-40 °F) to +120 °C (+248 °F) with peaks to +140 °C (+284 °F)

- Unmatchable handiness
- Its versatility of use helps to keep a controlled stock
- Wide range temperature
- Nitrosamine free
- Design Factor 3:1

Tolerances

I.D. \leq 25 mm according to UNI EN ISO 1307 I.D. > 25 mm according to RMA steel mandrel *Refer to Technical Handbook on page TH34*

Crimp Specifications

For currently qualified crimp specifications including coupling designation, refer to CrimpSource at www.parker.com/ crimpsource-euro.

Part Number			Max. Working Pressure			Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH30351250/40	6	14	3.0	450.0	30	0.18	40
IH30351251/40	8	17	3.0	450.0	30	0.25	50
IH30351252/40	10	20	3.0	450.0	30	0.34	60
IH30351253/40	13	23	3.0	450.0	30	0.40	80
IH30351254/40	16	27	3.0	450.0	30	0.52	100
IH30351255/40	19	30	3.0	450.0	30	0.60	110
IH30351256/40	25	37	3.0	450.0	30	0.88	150
IH36351250/40	32	44	3.0	450.0	30	0.95	320
IH36351251/40	38	51	3.0	450.0	30	1.20	380
IH36351252/40	42	56	3.0	450.0	30	1.45	420
IH36351253/40	50	66	3.0	450.0	30	1.93	500
IH36351254/20	65	82	3.0	450.0	30	2.50	650
IH36351255/20	76	92	3.0	450.0	30	3.08	750
IH36351256/20	100	122	3.0	450.0	30	5.05	1000

Hose layline example

-Parker PYTHON 30 bar 🏵

 \sim

JUMBO


Suitable for the discharge of hot and cold water, air and light-chemical media in many industrial and agricultural applications.

Hose Construction

Tube:	Black, smooth EPDM antistatic
	nitrosamine free rubber compound
Reinforcement:	Synthetic textile yarns
Cover:	Black, smooth EPDM rubber
	compound insulating with nitrosa-
	mine free rubber compound with
	three red, longitudinal and different
	stripes, resistant to abrasion, heat
	and weathering

Temperature Range

-40 °C (-40 °F) to +120 °C (+248 °F)

- Agriculture, construction and general industrial
- Long lasting embossed type branding
- Three red strips for easy hose identification
- Nitrosamine free
- Design Factor 3:1

Tolerances

According to UNI EN ISO 1307 Refer to Technical Handbook on page TH34

Crimp Specifications

For currently qualified crimp specifications including coupling designation, refer to CrimpSource at www.parker.com/ crimpsource-euro.

Part Number			₩	k. Working		Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH30116500/40	13	19	2.0	300.0	20	0.21	75
IH30116501/40	15	22	2.0	300.0	20	0.31	90
IH30116502/40	19	27	2.0	300.0	20	0.60	110
IH30116504/40	25	34	2.0	300.0	20	0.74	150

Hose layline example

JUMBO (logo) WASSERSCHLAUCH (logo) JUMBO 20 bar Ø mm. MAX 120°C

MINIERA 20 MSHA

Suitable for compressed air tools in factories and designed for quarries, building and mining industries. Tube resistant to traces of oil mist for medium duty.

Hose Construction

Tube:	Black, oil mist resistant, smooth
	SBR/NBR rubber compound
Reinforcement:	Synthetic textile fabrics
Cover:	Black, abrasion, ageing and
	weather-resistant CR nitrosamine
	free rubber compound

Temperature Range

-30 °C (-22 °F) to +80 °C (+176 °F)

- Also suitable for water and air in general service applications
- Nitrosamine free compounds
- Design Factor 3:1
- MSHA approved cover

Tolerances

According to RMA steel mandrel Refer to Technical Handbook on page TH34

Part Number			S Max	k. Working	Pressure	Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH36342161/40	19	30	2.0	300.0	20	0.62	190
IH36342162/40	25	37	2.0	300.0	20	0.81	250
IH36342163/40	30	42	2.0	300.0	20	0.98	300
IH36342164/40	32	46	2.0	300.0	20	1.24	320
IH36342165/40	38	52	2.0	300.0	20	1.43	380
IH36342168/40	50	66	2.0	300.0	20	2.08	500

Hose layline example

RUBBER AIR HOSE MINIERA 20 bar MSHA -Parker

 \sim

E-Z FORM[™] MP

Parker Global Product

Suitable for biodiesel, diesel, ethanol and gasoline in oil suction/return lines, vehicle fuel fill connector lines, drain lines on buses, cranes, mobile off-road equipment. Extremely flexible and lightweight it reduces installation times, eliminates special design, tooling and fabrication cost. Capable of being routed though confined spaces where preshaped and formed hose are normally required. Do not use for fuel dispensing or drag across sharp edges or very abrasive surfaces.

Hose Construction

Tube:	Black NBR, antistatic
	rubber compound
Reinforcement:	Multiple textile plies with wire helix
Cover:	Black, Greek corrugated CR rub-
	ber compound resistant to oil and
	weathering

Temperature Range

ID up to 25 mm: -34 °C (-30 °F) to +121 °C (+250 °F) all other sizes: -29 °C (-20 °F) to +93 °C (+200 °F)

- Saves time and costs thanks to easy and quick assembly
- Superior kink resistance, minimal force to bend, outstanding flexibility
- Permanent fittings capability
- Design Factor 4:1
- Vacuum: 0.9 bar

Tolerances

According to UNI EN ISO 1307 Refer to Technical Handbook on page TH34

Crimp Specifications

For currently qualified crimp specifications including coupling designation, refer to CrimpSource at www.parker.com/ crimpsource-euro.

Part Number			S Max	k. Working	Pressure	Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
IH72190500/10	12.7	23.8	0.5	75	5	0.45	23
IH72190625/10	15.9	27.0	0.5	75	5	0.55	33
IH72190750/10	19.1	30.0	0.5	75	5	0.58	36
IH72191000/10	25.4	36.0	0.5	75	5	0.68	36
IH72191250/10	32.0	43.0	0.5	75	5	0.75	56
IH72191500/10	38.0	49.0	0.5	75	5	0.85	74
IH72192000/10	51.0	63.0	0.5	75	5	1.44	117
IH72192500/10	63.5	76.5	0.5	75	5	1.74	183
IH72193000/10	76.0	90.0	0.5	75	5	2.23	223
IH72193500/10	88.9	104.0	0.5	75	5	2.86	298

Hose layline example

Darker SERIES 7219 E-Z FORM MP HOSE 75 PSI MAX WP

OILPRESS N/L 20

Suitable for multi-purpose applications requiring transfer of many types of fluids and for petroleum products with aromatic content not exceeding 50 %.

Hose Construction

Tube:	Smooth, black, oil and fuel resistant NBR rubber compound, suitable for petroleum products with aromatic content not exceeding 50 %
Reinforcement: Cover:	0

Temperature Range

-35 °C (-31 °F) to +100 °C (+212 °F), with peaks up to +120 °C (+248 °F) for oil

- Agriculture, construction and general industrial
- Suitable for many different fuels included Biodiesel B100
- Two different Working Pressure lines
- Wide range temperature
- Design Factor 3:1

Tolerances

According to UNI EN ISO 1307 Refer to Technical Handbook on page TH34

Crimp Specifications

For currently qualified crimp specifications including coupling designation, refer to CrimpSource at www.parker.com/ crimpsource-euro.

Part Number			Max. Working Pressure			Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
OILPRESS N/L 20							
IH30832000/40	6	12	2.0	300.0	20	0.12	25
IH30832001/40	8	14	2.0	300.0	20	0.15	35
IH30832002/40	10	17	2.0	300.0	20	0.21	40
IH30832003/40	13	20	2.0	300.0	20	0.26	55
IH30832004/40	16	23	2.0	300.0	20	0.31	65
IH30832005/40	19	28	2.0	300.0	20	0.47	80
IH30832006/40	25	36	2.0	300.0	20	0.74	100

Hose layline example

RUBBER HOSE OILPRESS W.P. bar R<1M Ω

 \mathbf{Y}

APERFRUT 20 - 40 - 80

For delivery of air, water and all fungicide products. Particularly suitable for spraying in agriculture. Resistant to compressor oil-mist.

Hose Construction

Tube:	Black, smooth, PVC compound					
Reinforcement:	Synthetic textile yarns					
Cover:	Orange (20), red (40) and blue (80),					
	smooth, abrasion, and weather-					
	resistant PVC compound					

Temperature Range

-15 °C (+5 °F) to +60 °C (+140 °F)

- Colored cover to distinguish WP level
- Multiple fluids for various industrial applications
- Design Factor
 3:1 for 20 and 40 bar
- Design Factor
 2.5:1 for 80 bar

Tolerances

Refer to Technical Handbook on page TH34

Part Number			S Ma	x. Working	Pressure	Weight	min. Bend Radius
	I.D. (mm)	O.D. (mm)	MPa	psi	bar	kg/m	mm
APERFRUT 20							
IH35040014/100	13	19	2.0	300.0	20	0.20	85
IH35040016/100	19	26.5	2.0	300.0	20	0.33	100
APERFRUT 40							
IH35040261/100	10	16	4.0	600.0	40	0.17	50
APERFRUT 80							
IH35040268/100	8	15	8.0	1200.0	80	0.17	25
IH35040270/100	10	18	8.0	1200.0	80	0.23	45
IH35040214/100	13	23	7.0	1015.0	70	0.38	60

Hose layline example

APERFRUT 20 bar PARKER
APERFRUT 40 bar PARKER
APERFRUT 80 bar PARKER

Parker's Motion & Control Technologies

At Parker, we're guided by a relentless drive to help our customers become more productive and achieve higher levels of profitability by engineering the best systems for their requirements. It means looking at customer applications from many angles to find new ways to create value. Whatever the motion and control technology need, Parker has the experience, breadth of product and global reach to consistently deliver. No company knows more about motion and control technology than Parker.

For further info call 00800 27 27 5374

Aerospace Key Markets

Aftermarket services Commercial transports Engines General & business aviation Helicopters Launch vehicles Military aircraft Missiles Power generation Regional transports Unmanned aerial vehicles

Key Products

Control systems & actuation products Engine systems & components Fluid conveyance systems & components Fluid metering, delivery & atomization devices Fuel systems & components Fuel tank inerting systems Hydraulic systems & components Thermal management Wheels & brakes

Climate Control Key Markets

Agriculture Air conditioning Construction Machinery Food & beverage Industrial machinery Life sciences Oil & gas Precision cooling Process Refrigeration Transportation

Key Products

Accumulators Advanced actuators CO₂ controls Electronic controllers Filter driers Hand shut-off valves Heat exchangers Hose & fittings Pressure regulating valves Refrigerant distributors Safety relief valves Smart pumps Solenoid valves Thermostatic expansion valves

Hydraulics

Key Markets Aerial lift Agriculture Alternative energy Construction machinery Forestry Industrial machinery Machine tools Marine Material handling Mining Oil & gas Power generation Refuse vehicles Renewable energy Truck hydraulics Turf equipment

Key Products

Accumulators Cartridge valves Electrohydraulic actuators Human machine interfaces Hvbrid drives Hydraulic cylinders Hydraulic motors & pumps Hydraulic systems Hydraulic valves & controls Hydrostatic steering Integrated hydraulic circuits Power take-offs Power units Rotary actuators Sensors

Pneumatics

Key Markets

Aerospace Conveyor & material handling Factory automation Life science & medical Machine tools Packaging machinery Transportation & automotive

Key Products

Air preparation Brass fittings & valves Manifolds Pneumatic accessories Pneumatic actuators & grippers Pneumatic valves & controls Quick disconnects Rotary actuators Rubber & thermoplastic hose & couplings Structural extrusions Thermoplastic tubing & fittings Vacuum generators, cups & sensors

Electromechanical

Key Markets

Aerospace Factory automation Life science & medical Machine tools Packaging machinery Paper machinery Paper machinery Plastics machinery & converting Primary metals Semiconductor & electronics Textile Wire & cable Key Products AC/DC drives & systems Electric actuators, gantry robots & slides Electrohydrostatic actuation systems Electromechanical actuation systems Human machine interface Linear motors Stepper motors, servo motors, drives & controls Structural extrusions

Filtration

Key Markets

Aerospace Food & beverage Industrial plant & equipment Life sciences Marine Mobile equipment Oil & gas Power generation & renewable energy Process Transportation Water Purification

Key Products

Analytical gas generators Compressed air filters & dryers Engine air, coolant, fuel & oil filtration systems Fluid condition monitoring systems Hydraulic & lubrication filters Hydrogen, nitrogen & zero air generators Instrumentation filters Membrane & fiber filters Microfiltration Sterile air filtration Water desalination & purification filters & systems

Fluid & Gas Handling Key Markets | Key

Aerial lift

Agriculture

Bulk chemical handling

Construction machinery

Food & beverage

Fuel & gas delivery

Industrial machinery

Renewable energy

Transportation

Life sciences

Marine

Mining

Mobile

Oil & gas

Key Products

Check valves Connectors for low pressure fluid conveyance Deep sea umbilicals Diagnostic equipment Hose couplings Industrial hose Mooring systems & power cables PTFE hose & tubina Quick couplinas Rubber & thermoplastic hose Tube fittings & adapters Tubing & plastic fittings

Process Control

Key Markets

Alternative fuels Biopharmaceuticals Chemical & refining Food & beverage Marine & shipbuilding Medical & dental Microelectronics Nuclear Power Offshore oil exploration Oil & gas Pharmaceuticals Power generation Pulp & paper Steel Water/wastewater Key Products

Analytical Instruments Analytical sample conditioning products & systems Chemical injection fittings & valves Fluoropolymer chemical delivery fittings, valves & pumps High purity gas delivery fittings, valves, regulators & digital flow controllers Industrial mass flow meters/controllers Permanent no-weld tube fittings Precision industrial regulators & flow controllers Process control double block & bleeds Process control fittings, valves, regulators & manifold valves

Sealing & Shielding

Key Markets

Aerospace Chemical processing Consumer Fluid power General industrial Information technology Life sciences Microelectronics Military Oil & gas Power generation Renewable energy Telecommunications Transportation

Dynamic seals Elastomeric o-rings Electro-medical instrument design & assembly EMI shieldina Extruded & precision-cut, fabricated elastomeric seals High temperature metal seals Homogeneous & inserted elastomeric shapes Medical device fabrication & assembly Metal & plastic retained composite seals Shielded optical windows Silicone tubing & extrusions Thermal management Vibration dampening

Key Products

ENGINEERING YOUR SUCCESS.

 $\ensuremath{\textcircled{\sc 0}}$ 2023 Parker Hannifin Corporation. All rights reserved.

EMEA Product Information Centre Free phone: 00 800 27 27 5374 (from AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, IE, IL, IS, IT, LU, MT, NL, NO, PL, PT, RU, SE, SK, UK, ZA)

US Product Information Centre Toll-free number: 1-800-27 27 537 www.parker.com Catalogue CAT/4401/UK 2023/11

Your local authorized Parker distributor